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PREFACE

From 1971 through 1973, a new sampled-data processing techni- -2 for
digital signals subject to colored multiplicative noise was developed
and subsequently patented by the Principal Investigator, at NASA Langley
Research Center. In 1974, a contract was issued by the Air Force Avionics
Laboratory to determine if the same technique which provided processing
gain against diffuse Doppler-spread multipath perturbations could be
applied to anti-jam processing.

Anti-jam processing algorithms were produced under the 1974 contract,
as well as a Monte Carlo simulation package for performance evaluation.
Between 1976 and 1978, substantial evaluation of the algorithms was per-
formed and documented, under an extension of the contract.

A final extension of the contract, through April 1979 served to sup-
port investigation of means for implementing carrier phase estimation and
bit synchronization with the detection algorithms. This report documents
those results and gives recommendations for further research.
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SECTION I

INTRODUCTION

This report documents further research under the subject contract
whose previous results have been reported in [1,4]. The basic te .nical
problem is that of optimum discrete-time recursive detection of binary
signals subject to additive colored and white noise. Previous results
showed that the Minimum Probability of Error detector is one which tracks
the colored noise and subtracts it from the received data. The related
question of identification of the statistics of the colored interfering
process was extensively investigated in Reference 1.

The research effort, documented herein, was pointed toward several
related questions. First, it was desired to investigate the problem of
simulataneous estimation of the carrier phase references required by the
coherent detection algorithm. It was desired to specifically determine
the method for measuring phase and also the augmentation of the detection
algorithm required to operate with imperfect phase estimates.

Next, it was desired to investigate the possibility of non-coherent
detection with interference tracking, with application to Frequency-Shift-
Keying and Differential Phase-Shift-Keying.

A third area of interest was to determine a method for obtaining bit
synchronization for the interference-tracking detection algorithms. This
would then lead to assembly of a complete algorithm for the so-called
IDEI (Integrated Detection, Estimation, Identification) receiver.

Finally, it was desired to obtain Monte Carlo evaluation of the aug-
mented detector, operating in an environment of colored plus white addi-
tive noise.

A11 of the desired areas are investigated below. An expected result
is that the coherent detector performance is degraded when carrier phase
js estimated from the received data. An unexpected result is that a non-
coherent version of the interference-tracking detection algorithm does

not exist.
Recommendations are given on further research which may lead to im-
proved performance of the complete IDEI receiver.




SECTION II
COHERENT DETECTION WITH PHASE ESTIMATION

1.  SIGNAL AND CHANNEL MODEL

Figure 1 shows the overall model of the signal channel and signal
processor. A continuous-time signal, s(t,m), is transmitted through the
channel.

s(t,m) = A(t;m)cos[wct + ¢(tym)] (1)
In (1), A( ) and ¢( ) are the envelope and phase functions, respectively.
m denotes a digital symbol, which in the present work is restricted to
the binary alphabet, {0,1}. Any arbitrary signal waveform may be repre-
sented in the form of (1).

The signal is subjected to additive colored and white noise, as per
the figure. Then the bandpass signal plus noise process is translated to
baseband in two separate channels, using coherent product detection with
sinusoidal reference signals which are in phase and in phase quadrature with
the unmodulated carrier signal. Following the I-Q demodulation, the two
low-pass signal components of the signal vector are sampled to produce
a discrete-time vector. The discrete-time signal is then processed further
to recover the message symbol decisions, ﬁ,

The I-Q product demodulators require reference sinusoids having pre-
cise phase references, matched to the phase (zero) of the unmodulated
carrier signal. Since this phase is A Priori unknown, the phase reference
must be provided by the signal processor, itself, by phase estimation
from the received data vector. The reference phase, so produced, is
generally a function of time, ¢o(t), as shown in Figure 2.

Since the signal phase is A Priori unknown, the signal model of (1)
may be augmented with a random (or stochastic) phase term ¢A as

s{t,m) = A(tsm)cos[w t + o(t;m) + "5]

= Ai(t;m)COcht - Aq(t;m)sinmct (2) :
where g
4i(t;m) = A(t;m)[cos¢(t;m)cos¢4- sin¢(t;m)sin¢6]
AQ(t;m) = A(t;m)[sin¢(t;m)cos¢é + cos¢(t;m)sin¢é] (3)
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Figufe 2; f—d Cafrier Démodulaio;

are the in-phase and quadrature low-pass components of the band-pass
s(t;m).
The I-Q components of s(t:m) form a vector

8. (tsm) cos¢, -sing || A(t;m)cos¢(tsm)
‘ - ’ ¢ = s(tsm)
Aq(t;m) sin¢A cos¢, A(t;m)sin¢(t;m1_ -

(4)
Likewise, the additive colored and white noises may be written in terms
of 1-Q components as

yi(t)
yq(t)_

n;(t)
nq(t)

y(t) =

ct
~—
h

(5)

where y(t) is the low-pass I-Q colored interference vector and n(k) is
the 1-Q data vector, z(t) may then be written as 4

z(t) = a(t;m) + y(t) + n(t) (6)
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The problem of detecting the digital symbol, m, in the presence
of colored noise, white noise, and unknown signal phase is essentially
the problem of processing z(t) to make an optimum decision on m. .his
problem is analyzed in some detail below.

2. JOINT DETECTION WITH PHASE ESTIMATION

It is desired to reformulate the discrete-time recursive detection
problem of [1] for the present case where the signal phase is unknown and
time-varying. At this point it is still assumed that the symbol epoch,
or timing, is known. The decision problem is based on processing the
discretized I-Q data vector of (6). That is, a sequence of samples, z(tk)
is processed recursively over the period of the binary symbol, m. Bit
decision is made at the end of the symbol period. As in [1], decision-
direction is to be used from symbol to symbol, in order to preclude a
processor size which would grow exponentially with symbol sequence length.

The assumed data generating model is that of Figure 3, wherein
z(k), n(k), s(ksm), and y(k) are the sampled versions of z(t), n(t),
s(t;m), and y(t), respectively, and k is sample number. The colored
interference process, y(k), is generated from zero-mean, white, Gaussian,
unit-variance noise (a two-vector), W(k), which is independent of the
channel noise, n(k). The true structure of the y(k) generator is the set
{r ,o,A} which may also be unknown. The problem of joint jdentification
of {I,d,A} has been treated in Reference 1.

The decision on m is to be made according to the maximum A Posteriori
Probability (MAP) strategy. That is, a decision statistic, S] is to be
formed recursively from the~!'t of all data samples, z(k), taken in sequence
during the symbol period. Let Z(k) denote the 2-K vector of K samples of
the I-Q data during th X riod.

Z(k) [£(KV)‘, z(K-1),..., (1
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Figure 3. Data Generating Model

The MAP decision statistic is the probability
s'(K.m) = p(n{Z(K)) (8)

The decision rule is that the detected symbol, %, is that one for which
S](K,%) is maximum.

Assuming that the A Priori probability of transmitted symbols, p(m),
is known, maximization of S](K,m) is obtained by just maximizing the
Maximum Likelihood (ML) statistic, S(K.,m), where

s'(k,m) = B+ piz()|m)

S(K,m) = p(Z(K)|m) (9) a

Now, the signal, s(k;m), is a function of an unknown phase process,
¢A(k)’ as per Eq. (4). Thus, define a K-vector, &(K), as
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The unknown phase process, $(K), is imbedded in the problem by using the
composite detection approach, as

P(Z(K)|m) = sr---1 p(Z(K), &(K)|m)do, (K)---do, (1) (m)

The ML decision statistic, S(K,m) is to be generated in recursive form.
Thus, the argument of the integral in (11) is manipulated to obtain a
recursive form,

We have

PZ(K), $(K)|m) =
= p(z(K), Z(K-1), ¢,(K), 9(K-1)[m)
p(z(K), 6,(K)Z(K-1), 2(K-1), m) -

p(Z(K-1), &(K-1)|m)
p(z(K), ¢,(K)|Z(K-1), 0(K-1), m) -

p(2(K-1)[Z(K-T), m} - p(Z(K-T1)|m) (12)
Then,
p(Z(K) |m)
= S50 p(z(K), o, (K)[Z(K-1), &(K-1), m) -
p{2(k-1)]Z(K-1), m) - p(Z(K-1)]m)dg,(K)---do, (1)
(13)
and
S(K,m) = S(K-1, m)Q(K) (14)
where

QK) = freo+1 p(z(K) |0, (K), &(K=1), Z(K-1), m) -

p(o,(K)2(K-1), Z(K-1), m) - p(8(K-1)]Z(K-1), m) -
do, (K)++-do, (1) (15)




Now, let us define §(£) to be the conditional-mean estimate of ¢(¢),
given the data z(k) for k = 1,2,...,£, and given the symbol, m. Then,
#(2) maximizes p(@(£)}Z(£), m). Now, it is assumed that the gradients
of p(z(K)[9,(K), 2(K-1), Z(K-1), m) and of p(¢,(K)|2(K-1), Z(K-1), m),
yith respect to ¢é(K-1),.... ¢4(])’ evaluated in the neighborhood of
$(K-1), are sufficiently small so that the approximation may be made

Q(K) = Sp(z(K) [0, (K)» 2(K-1), Z(K-1), m) «
plo, (K)|Z(K-1), 8(K-1), m)dg, (K) (16)

This approximation says that the functions p(z(K)|( )) and p{¢ (K) ( )),
viewed as functions of the ¢A(K-1), cees ¢6(1), are sufficiently “flat"
that p(@(K-1)|( )) appears as a multi-dimensional delta function, cen-
tered at the co-ordinates, ;A(K-l),..., $¢(])' The multiple integral then

simply evaluates the argument at those coordinates, analagous to “sifting”
with a delta function.

Physically, the approximation means the following. If a sufficiently
accurate conditional-mean estimate may be obtained for the phase process,
¢A(]),...,¢A(K-l), then the density, p(#(K-1)|Z(K-1),m), will have a
very small variance about the mean estimate. Thus, the density p(¢(K-1)|
( )) will be so highly concentrated that the densities, p(z(K)|( )) and
p(¢A(K)|( )) will be flat by comparison. Thus, the accuracy of the ap-
proximation depends entirely on the availability of a very good phase
estimate. )

Similarly, now define ¢4(£) to be the one-stage conditional-mean
prediction of ¢A(K), given the previous data, Z(£-1), the previous condi-
tional mean estimate, ®(2£-1), and the symbol, m. As previously, assume
that ¢A(£) is sufficiently accurate so that p(z(2)}|( )) is flat, by compar-
ison, in the neighborhood of ¢5(£)' This, then, yields the final approxi-
mation R .

Q(K) = p(z(K)[6,(K), 2(K-1), Z(K-1), m) (17)

The recursive decision statistic is then

e T ey Y b B G ey -0 YW W O



K
m Q(k)
k=1

S(X,m)

K a ~
kf]p(i(k)ld’é(k), &(k-1), Z(k-1), m) (18)

It is seen from (17) and (18) that the recurs1ve detector must form the
conditional probability function, p(z(k)|¢ (k), ¢(k 1), Z(k-1), m), at
each sample time (number) k. Moreover, operatung in parallel with the
decision circuitry, and furnishing recursive phase estimates to it, is
a conditional-mean phase estimator-predictor. The estimator produces the
estimates . N N

0,(k) = E{o, (K)|2(k-1), Z(k-1), m}

(k) = E{@(K)|Z(K), m} (19)

The problem of conditional-mean estimation of the phase of a sinusoid
in Gaussian noise is a non-linear estimation problem without a known
general solution. However, the first-order approximate solution is known
and is a phase-locked loop [2]. The closely related approximate Maximum
A Posteriori Probability estimator is also a phase-locked loop [3]. Given
the symbol, m, and, hence, the corresponding signal waveform, s(t;m),
the bandpass received data, z(t), consists of a sine wave of unknown
(random) phase, imbedded in additive colored plus white Gaussian noise.
Thus, the available solution t> the estimation problem indicated by (14)
is the decision-directed phase-locked loop. Note that the PLL is only
the approximate solution to (19) fur the case where the phase-estimation
error is quite small. Thus, the optimality of the detection algorithm of
(18) will depend on the phase estimation accuracy which may be realized
in practice using the PLL.

3. - THE I-Q DATA MODEL WITH PHASE ESTIMATION

In order to proceed with the detection and phase estimation algorithms,
the discrete-time I-Q data generation model must be extended beyond that
of equation (6) and Figure 3. Under the assumption that the I-Q demodu-
lating reference sinusoid phases are estimated, the model changes somewhat.
Let the physical model be shown in Figure 4.
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LPF —o z;(t)
Sri(')
s (t,m) + *{:i:}
y(1) n (1)
LPF }—o zq(t)
s rq(f)

Figure 4. Data Model

In Figure 4, the transmitted signal with unknown phase is

s'(t,m) = Acos[w .t + ¢(t,m) + ¢,(t)] (20)

where ¢{t,m) is the angle modulation waveform, containing the symbol, m.
The unknown, possibly time-varying, phase term is ¢4(t)’ The additive,
zero-mean, Gaussian colored and white noises are respectively,

y'(t) yi(t)COcht - yq(t)sinwct

n'(t)

n%(t)COcht - né(t)sinwct (21)

where the i and q subscripts denote "in-phase" and "quadrature" low-pass
components, respectively.
The product detector reference sinusoids are

5,4 (t) = 2c0slu t + §,(t)] a

8pq(t) = ~2sinlu t + 4,(t)] (22)

10




where aé(t) is the phase estimate of ¢4(t)’ provided by the phase-locked
loop. The usual problem of the phase-locked loop responding to the low
frequency portion of the modulation ¢(t,m) may be encountered, depending
on the exact form of the modulation.

Now define,

5,(t) - 0,(t) & (t) (23)

It may be shown that the low-pass I-Q data vector has the form

z;(t) [jCOSE(t) sins(t)] Acos¢(t,m) | y;(t) n,(t)
= + +
zq(t) ~sine(t) cose(t) Asin¢(t,m{J yq(t) nq(t)
(24)
where
r311-(t) _[ cosg’é(t) sing:é(t)] yi(t)
ygtr]  Lesing,(e)  cose (61 |ya(t)
—ni(t) : [cosq)é(t) s1'n¢4(t):l n%(t) (25)
nq(t) —sin%(t) cosq;b(t) na(t)

With n'(t) white, Gaussian, zero-mean with variance, oi, then n(t) is
also white, zero-mean, with variance oi. This is because the multiplying
matrix is a rotation matrix. However, n(t) is not Gaussian, in general.
ForAtime periods which are short compared to the reciprocal bandwidth

of ¢4(t)’ n(t) appears approximate]yzGaussian. With y'(t) colored,
Gaussian, zero-mean, with variance cy, y(t) is zero-mean with variance
05. y(t) is not Gaussian and may be of slightly greater bandwidth than

y'(t), if the variation of ¢é(t) is not small.
The new data model of (24) may be written in three equivalent forms,
and in discrete time, as

1
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2(k) = Hlo, (KXHIo, (K)Is(kim) + y'(K) + n'(K)}  (26a)
2(k) = HLe(k)Is(ksm) + y(k) + n(k) (26b)
2(k) = H[kimlp(k) + y(k) + n(k) (26¢)

where in (26)
cose(k) sine(k) Acoso(k;m) ‘
HLe(k)] =[ ] 3 alksm) = [ :l
-sine(k) cose(k) Asing(kszm)

cosp(ksm) -sing(k;m) Acose(k)
RLksm] = [ ] ]; plk) = [ :]
sing(k;m) cos¢(ksm) ~Asing(k)

(27)

H[A 0] = [cosgé(k) singb(k):]
% -sin;A(k) cos;A(k)

cos¢6(k) -sin¢b(k)]

H[o (k)] = [
% sin¢4(k) cos¢6(k)

In (26b), the matrix H(k;m) is a function only of the signal. The vector,
p(k), is a function only of the phase-tracking error process, (k).
Detection of m in the presence of p(k) is a multiplicative noise detection
problem. The presence of the additive colored and white noise processes,
y(k) and n(k), respectively, gives a compound detection problem, having
multiplicative and additive colored noise.

The compound detection problem for multiplicative and additive
colored Gaussian noise was solved in [4]. There it was found that the
detector was one which tracked both the muitiplicative and additive color-
ed noises and attempted to remove them from the data, z(k). Although, in
the present case, the various multiplicative and additive noises are not
strictly Gaussian, the tracking detector may still be used. Note that -
when (k) is small then p(k) is approximately

k) = AL_y] 5 Je(k)] << 1 (28)

In this case, e(k), the phase tracking error, is Gaussian and p(k) is H
approximately Gaussian.

The final data generator diagram, corresponding to equations (26)
is shown in Figure 5.
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slkim)  n(k) $,(k)

Figure 5. Data Generator Model for Phase Estimation

4. DETECTOR STRUCTURE AND ALGORITHMS

With the data generator given as in Figure 5, the tracking detector,
with phase estimator, takes the form of Figure 6. In the detector, there
are two decision-directed tracking filters, one implemented for the
signal waveform corresponding to m=0, and the other for m=1. Each tracking
filter is matched, in the Wiener sense, to both p(k), the multiplicative
noise, and y(k), the additive noise. Thus, the detectors are implemented
for the data, z(k), in the form of equation (26c). The tracking error
waveforms, £(k;m), drive the degision circuitry which produces the deci-
sion on the received symbol as m, 2

It was shown above that generally the phase estimator is decision- é
directed. However, a non-decision-directed phase estimator may be imple-
mented if the transmitted signal possesses a residual unmodulated carrier
component. This is shown as follows for a phase-shift-keyed signal.

T RS 4
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Suppose that the signal phase term is

¢(ksm) = Apec(ksm) ; c(ksm) = 13 m=0
= -1; m=1
0 <Aap < /2 (29)
Then
coso{k;m) = cos(Ad)
sinp(k;m) = c(ksm) + sin(a¢) (30)
It follows that
cose(k) sine(k)
Hlk;m]p(k) = Acos(A¢) [ ] + c(k;m)-Asin(A¢)[: J
-sine(k) cose(k)

(31)
From (31) it is seen that there is present in the received data an addi-
tive term proportional to -sine(k), which may be used to drive the phase
estimator. Likewise, there is an additive term proportional to cose(k)
which may be used to estimate A (coherent automatic gain control). The
PSK waveform, c(k;m), is present in both I-Q channels, due to the multi-
plicative process with components sine(k) and cose(k). Provided that the
bandwidth of c(k;m) is sufficiently wide and the closed-loop tracking
bandwidth of the phase estimator is sufficiently small, the estimator can

track phase in the presence of c(k;m) without decision-direction.
Each decision-directed tracking filter in Figure 6 is of the form

of Figure 7. In the figure, the inner loop, composed of elements G ,

®5s Ag» and H{k;m], track the multiplicative process, p(k). The elements
{Gp, ®o» Ap} are the elements of a Wiener filter in Kalman canonical form,
matched to p(k). H[k,m] contains the signal waveform elements, as in (27).
The outer loop tracks the additive colored interference, y(k). The ele-
ments, {Gj, °j’ Aj}, are those of a Wiener filter matched to y(k). The
filter algorithms are
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Figure 7. Tracking Filter

p(k) = Ax (k|k-1)

gp(kn(-n - q>p[£p(k-uk-z) + 6 £(k-1)]
y(k) = A (k[k-1)

x(k[k-1) = 050, (k-1[k-2) + 6,E(k-1)]
(k) = 2(k) - [H(Gm)p(k) + y(K)] (32)

It is seen from Figure 7 and (32) that the Q(k) filter and é(k) filter
are uncoupled, except for that coupling inherent in the pseudo-innovations,
£(k). Filter design consists of selecting the two sets of parameters
{Gj, Qj, Aj} and {Gp, ®os Ag}l. The selection is based on either real-time
identification of y{k) and p(k), as per [1], or on an ad hoc worst case
design. The ad hoc design, while not optimum, would, under conditions
discussed in [1], produce acceptable results.

——— —— r—————
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5. THE PHASE ESTIMATOR
From equations (26c) and (31) we may write an expression for the
(continuous-time) data vector, as seen by the phase estimator, as

cose(t)
z(t) = A'[ ] + n(t) (33)

sine(t)

In (33), n(t) is the total noise process due to y(t), n(t), and c(t:m).
For the bandwidth of y(t) and the band-rate of c(t;m) sufficiently great
with respect to the closed Toop bandwidth of the phase estimator, the
noise process, n{t), will appear white to the phase estimator.

It is seen that the problem of deriving the phase reference, ;A(t),
which is an accurate estimate of the residual carrier phase, ¢6(t), is
that of minimizing e(t) in the presence of the unknown amplitude, A', and
noise, n(t). This is, essentially, a phase-locked loop problem. Under
the assumption that n(t) is white and Gaussian, the solution is the clas-
sical phase-locked loop.

Note that the usual problem of unknown signal amplitude, A', is
present. There are two classical solutions. One is to use the Q-channel
only, for phase estimation, with an ideal pre-limiter to remove dependence
on A'. The other solution is to also use the I-channel to estimate A‘
and to then control the gain of the Q-channel. An extension of the second

method is shown in Figure 8.
In Figure 8, the Q-channel waveform, z_(t) is processed by a "Loop
Filter" with low frequency gain, H(0), to produce an estimate of the term,

(-A'sine(t)), weighted by H(0). The I-channel waveform, zi(t), is process-

ed by a low-pass filter with unit low frequency gain to procuce an esti-

mate of the term, A'cose(t). The two filter output terms are then divided

point-wise in a digital divider to provide an estimate of (-tane(t)),

weighted by H(0). The latter estimate then drives the Voltage-Controlled-

Oscillator (VCO) to produce the reference phase, ¢4(t)' It can be seen
from the defining equation (23) for e(t) that the mechanization of
Figure 8 causes ¢A(t) to track ¢4(t)'

17
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Figure 8. Tangent Phase-Locked Loop

The usual phase-locked loop generates a tracking error voltage pro-
portional to (-sine(t)). The present implementation provides a tracking
error proportional to (-tane(t)), which will yield higher loop gain for a
large tracking error, e(t). However, the main reason for using the "Tan-
gent-Loop" mechanization is to obtain the automatic gain control feature
in the cancellation of the unknown amplitude, A'.

The design of the loop parameters, notably the loop filter, is per-
formed by assuming linear operation of the loop. That is, when e(t)
is small, say less than 12° in magnitude, then the approximation holds

tane(t) = sine(t) = e(t) (34)

Then, the overall system operates as a linear servo-mechanism for phase,
or as a linear phase-locked loop.

In the usual implementation, the Loop Filter in the quadrature channel
is implemented with one finite zero of transmission and one finite, non-
zero, pole. The pole frequency, zero frequency, and low-frequency gain,
H(0), are set to realize the desired closed-loop noise bandwidth, static
phase error for VCO frequency offset, and second order dynamic response.
The low pass filter in the I-channel is set for the same zero and pole
frequencies as for the Q-channel Loop Filter, but with unit low-frequency
gain.

Note that for the PLL to operate properly, the signal to noise ratio

must be large in the closed-loop equivalent noise bandwidth of the loop,
itself The PLL bandwidth is to be maintained small enough to just

18
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accomodate the dynamics of the received signal phase, ¢,(t), due to Doppler
effects on the transmission link. For the case where the incident noise is

dominated by colored interference, such as jamming, the loop perfc “iance
will be affected by that portion of the colored interference falling with-
in the (narrow) loop bandwidth.

6. THE LOOP FILTER MECHANIZATION
The continuous-time version of the Loop Filter is characterized by
the transfer function

= K[S=Z
H(s) = KI32] (35)
where K, z, and p are real, with z and p being negative. Let p(t) and

z(t) denote the filter input and output, respectively. A state variable
representation is set up, using the singie filter state, x(t), as

x(t) = px(t) + u(t)

K(p-z)x(t) + Ku(t) (36)

z(t)

The filter is converted to discrete time by driving it with an ideal
sampler and zero-order hold circuit and observing the output only at
sampling instants, t = tk for k = 1,2,3,.... The differential equation of
(36) is then solved between the kth and (k+1)st sampling times as

x((k+1)T) = exp[p((k+1)T-kT)] « x(kT)

+ ka(k+])T exp[p(k+1)T - t]W(7)dr (37)

where
W(t) = u(kT); kT <t < (k+1)T (38)

and T is the sampling interval. The differential equation solution then
yeilds the governing difference equation (discrete-time) for the filter as
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x(k+1) = ox(k) + yu(k)
z(k) = K(p-z)x(k) + Ku(k)

¢ = exp(pT) : vy = 1/p(¢-1) (39)
The Loop Filter constants, K, z, p, are set according to specifica-

tions on the linearized closed-loop transfer function for phase. The VCO
output phase, ¢A(t) is given by

0,(t) = S{-[0,(t) - §,(t)Ixh(t)}dt (40)

or

[o(8) - 8 ()]-H(s)
S

8 (s) (41)

2

where H(s) is the Loop Filter transfer function given in (35).
The closed-loop transfer function for the PLL is then

~

o (4)
6(s) = 4>st¥ - < 2(31)5‘) (42)
Substituting for H(s) yields
G(S) - K(S-Z) - K(S-Z) (43)

52 + (K-p)s - Kz s2 + Zémns t
where &8 and w, are the classical damping ratio and resonant frequency for
a second-order setvo system.
The Loop Filter low frequency gain, H(0), is given by
H(o) = 1M k(EZ) =k 2 (a4)

For most PLL designs the following assumptions hold

-z << H(0)
-p << K (45)

Thus, by equating like terms in the denominator of (43)
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K = 28w
n
Kz = wﬁ (46)

Now, it may be shown that the one-sided closed-1oop noise bandwidth,
in Hz, for G(s) is [5]

W
B = KpKozy o Koz om0 (47)

Thus,

4
2=-|—%|* 8B (48)
[1 +4 62] n

For loop dynamic stability, the damping ratio is set as

§ = 1/V2 (49)
Then

K =8/3 Bn

z=-4/3 Bn = -K/2 (50)

The Loop Filter pole frequency, p, is generally set as small as
possible in magnitude. This is because p affects the "static phase error"
when tracking with a fixed Doppler offset in the received frequency. In
order to hold the loop in lock when the input phase ¢A(t) has a constant
first derivative requires a constant driving voltage into the VCO and hence
a constant phase error, £(t). Thus,

)

d ~ =
5 ¢ (t) % dw = - H(0) tane (51)

where Esp is the static phase error for a Doppler offset, Aw = 2mAf. The
d.c. gain of the loop filter is




2

8
32 “n
H(0) = K £ = 2¢
(0) = k2= oo (s52)
For desired small values of static phase error
2
omaf =32 00 (53)
9 T2 pl sp
where fp is the Hertz value of -p. Thus,
2
B® ¢
£ 32 n__sp (54)

P g(2n)? Of

Equation (54) gives the relation between the various quantities and f .
Thus, the design equations for the quadrature channel loop filter

are
Kq = 8/3 Bn
z = -4/3 Bn 3 quadrature filter (55)
2
.k
p 1 X3

where €sp is static phase error in radians for a Doppler offset of Af Hertz
and a closed loop noise bandwidth of Bn Hz.

For the inphase filter, the same pole, p, and zero, z, are used, but the
d.c. gain is reduced to unity to give a filter gain constant

Ki = p/z ¢ inphase fiiter (56)

The block diagram of the phase estimator is given in Figure 9. In
the figure, the discrete time version of the VCO (phase integrator) is
represented by

8,(k+1) = 0,(k) + T/2[v(k#1) + v(K)] (57)

where v(k) is the VCO input.
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Figure 9. Discrete-Time Phase Estimator
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SECTION III
ON THE EXISTANCE OF NON-COHERENT TRACKING DETECTORS

It is desired now to determine if a non-coherent version of the
tracking detector exists. In [1] the non-coherent version of the standard
FSK detector for white noise was derived. The approach for the tracking
detector will be similar. An unknown constant phase term will be intro-
duced into the formulation of the detection problem. Then, the detec-
tion statistic will be averaged with respect to the unknown phase. Up
to this point, the procedure is the same as was followed in II.2. That is,
the problem is that of composite detection for unknown phase. In II1.2
there existed a solution of the composite detection problem which produced
a phase estimator as part of the detector. In the present formulation,
the phase estimator solution is purposely rejected and no attempt is
made to take advantage of possible phase information. Rather the unknown
phase is defined to be uniformly distributed over the interval, [0, 27],
and to be a constant random variable over the time interval of the signal
symbol. Then it is to be determined whether averaging the decision statis-
tic over phase produces a sufficient statistic for detection.

The unknown phase enters the problem as per Figure 2, where now
¢0(t) is defined to be constant over the symbol interval, which is also
the processing time. Also ¢o(t) is uniformly distributed as

9o(t) = ¢ : 0<t<T
pl¢) = 1/2n P 0o 2m
=0 otherwise (58)

The discrete time data model, z(k), is essentially that of (26a)
where ¢ (k) = ¢ and ¢ (k) = 0. Thus,

z(k) = H(¢)[a(k) + y(k) + n(k)] (59)

where a(k) is the transmitted signal, y(k) is the colored interference,
and n(k) is the white noise.

The detection statistic, S(K), is formed recursively from the z(k),
and is the Maximum A Posteriori Probability function, p(m|z(K)), where
Z(K) is the 2K partitioned vector,
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2(K) = [2(K), z(K-1),..., z(1)]" (60)

The quantity, m, is the signal digit, which for the binary case is either
0 or 1. Under the assumption that the transmitted digits, m, are equally
distributed (p(m) = 1/2; m=0,1), the MAP statistic is equivalent to the
Maximum-Likelihood (ML) statistic, p(Z(K)|m). Thus, S(K) is obtained by
averaging the joint density on Z(K) and ¢, given m.

2
S(K) = p(K) ) = S "o(Z(K), ¢|m)do

2
of 57 P(Z(K){m, ¢)do (61)

The conditional density, p(Z(K)|m, ¢) is

K
p(Z(K)|m,0) = kj]p(z(k)lz(k-n, m, ¢) (62)

Now, p(z(k)|Z(k-1), m, ¢) is Gaussian, under the definition that y(k) and
n(k) are Gaussian, and is given by

= 1 exp[- L7 (2(K) - 2(k[-1. m, N T(z(K) - 2(k[k=1, m, ¢))]
[¢]

2no
v (63)

In (63), 03 is the steady-state Innovations variance andli(k|k-1, m, ¢) is
the recursive estimate of the kth data sample, given all the data up
through the (k-1)st sample. This one-sample predictive estimate is ob-
tained from the Kalman-form filter of Figure 10. In the figure, the
quantities, {9, A, G}, are the appropriate Kalman (Wiener) filter para-
meters for tracking y(k), the colored interference, in the presence of
n(k), the white noise.

\Y
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Figure 10. Kalman Filter

The filtering algorithms are

2(k[k=1) = H(6)[a(K) + y(k]k-1) = H()a(K) + H()AoX(K-1)
X(K) = ¥(6)x(k-1) + p(k,0)3 ¥(6) = [I-6H(¢)AJe

u(k,0) = GLz(k) - H(¢)alk)] (64)

The solution to (64) at the kth sample is given by

~ ~ k-1
2(kjk-1, m, ¢) = H(e)[alksm) + Ao[¥*" (4)x(0) + 1 v (ouk-1),0)7)
“:
(65) .
It is seen at this point that any hope of averaging p(Z(K)|m,¢) over ¢ is

futile due to the internal dependency of z(k|{k-1, m, ¢) on ¢. That is,
it is the feedback dependency of the estimate y(k|k-1, m, ¢) upon ¢ which

defeats the prospect of averaging over ¢.
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Figure 11. Kalman Filter

There is a second‘pbgsibility for a noncoherent implementation. The
term, H(¢)y(k), in the data model of (59) is not strictly Gaussian, but
does have the same first and second moments as y(k), since H(¢) is unitary.
Also, since ¢ is constant over a symbol period, H(¢)y(k) has the same
short-term spectral properties as y(k). Thus, the data form may be re-
defined as

z(k) = H(¢)a(ksm) + y(k) + n(k) ; 1 <k<K (66)

where y(k) and n(k) have replaced H(¢)y(k) and H(¢)n(k), respectively. In
(66), y(k) and n(k) are taken as Gaussian.

The resulting Kalman estimator for £(k|k-1, m, ¢), corresponding to
the data model of (66) is as in Figure 11.

The filtering algorithms now are

2(K|k-1, m, ¢) = H(o)a(ksm) + y(k|k-1, m, ¢)

H()a(ksm) + Aox(k-1)

+

x(k) = ¥x(k-1) + u(k,0) 5 ¥ = (I-GA)
ulkse) = G[z(k) - H(¢)s(ksm)] (67)
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The solution to (67) is

~ k-1 kel a1
2(k{k-1, m, ¢) = H(p)a(ksm) + Ae[¥"" x(0) + .Zl v u(k-1 ,0)]
1=

(68)
Now, (68) is somewhat of an improvement over (65) in that ¥ is no longer
a function of ¢. Unfortunately, p( )} is still dependent on ¢ and this
causes the dependency of 2(k|k-], m, ¢) on ¢ to be internal because of
the feedback structure of the filter. Thus, averaging p(Z(K)|m,¢) over
¢ is still not feasible.
The argument of the exponent of p(z(k)|Z(K-1), m, ¢) in (63) is

Arg = (z(k) - y(k|k-1, my 0))7(+) + 4" (ksm)a(ksm)

- 28 (ksm)H T (6)[2(K) - y(k|k-15 m, 9)] (69)

This argument is of the same form as is encountered in Ehe standard non- {
coherent FSK detector problem [1], except that (;(5) - y(k|k-1, m, ¢))
has replaced z(k). Were it not for the fact that y(k|k-1, m, ¢) is an
explicit function of ¢, as in (67), then the averaging over ¢ would be
exactly the same as in the FSK problem. Unfortunately, there seems to
be no further recourse to the problem at this point.
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SECTION IV
SIMULATION RESULTS

A Monte-Carlo simulation program was written to obtain error-rate
results for coherent detection with phase estimation. The detecto algo-
rithm which was implemented was that detailed in Section 1I.4. The program
realized the compound detector and phase estimator of Figure 6 where the
tracking filters were of the form given in Figure 7. The phase estimator
was the Tangent Phase-locked loop shown in Figure 9.

In order to reduce simulation run times, the Monte Carlo program,
documented in [4], was not modified for present use. Rather, an entirely
new program was written. In the new program, the data generator, shown
in Figure 5, was reduced from three states, as in [4], to one state. This
resulted in the Kalman filters also having one state in each branch
shown in Figure 7. Since computation load increases exponentially with
state size, a considerable savings was made. A1l that was lost was some
flexibility in modeling the additive colored noise process. For the pur-
poses of the present work, the one-state model was sufficient.

It was desired to test the compound detector and phase estimator in
a realistic but stressful environment. Thus, a phase-locked loop noise
bandwidth of 2.5 Hz was chosen as being as small as could likely be real-
ized in a reasonable implementation. It was desired to run the phase-
locked loop at 0.3 radians r.m.s., phase error, or less. Thus, it was
necessary to relate the various simulation parameters, such as E/No,
colored noise bandwidth, etc., to the phase-locked loop signal to noise
ratio.

Letting J denote the power of the colored process, y(k), (in bandpass
form) and B\J the one-sided equivalert noise bandwidth of the low-pass I-Q
process, an eqivalent white bandpass spectral density, NJ, for the colored
process is defined by

J = NJ . 2 BJ (70)
Then, the total equivalnet white noise spectral density is
NT = No + NJ ()

s e o et e e o2 . ﬁ




where No is the density of the incident additive white receiver noise.
The symbol energy, E, in the received signal is related to total sig-
nal power, S, and symbol period, T, by

E = SeTeL,(A¢) (72) :
where LM(A¢) is the "modulation loss" factor given by ¢
Ly(89) = sin’(a) (73)

where A¢ is phase deviation in radians for the phase-shift keyed signal.

Thus,
E
S = - (74)
Ly(86)-T

From (70) and (74) results

S E

= = " " (75)

J " L, (8¢)-T-N 28]
Now,

B
E = = —S- * L3 -u—J .

where R = 1/T is symbol rate. Thus,

(E/N,) o

S B
Ly(ae)+(3)

)N, (77)

and

(E/N_)
O ()N (78)

1+ —
Ly(ae)-(3) J

=
1l

It is desired to compute the ratio of residual carrier power to total
white noise power in the Loop-noise bandwidth (one-sided), BN' The resi-
dual carrier power, SC is

L.(a¢)
- . C E _
S¢ = Lclae)s = L(56) T~ 2 (79)
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where LC(A¢) is "carrier loss" given by
_ 2
Lo(a¢) = cos™(a¢) (80)
The desired signal to noise ratio is

S_c _ Sc i (R/BN)'E_E;NO) - (81)
N |B NTB (E/ 0) ] (Eﬁ_)]

N _ 0
Ly(ao)(3)

N tanz(A¢)[l +
i

Jote that when the equivalent white spectral density of the colored inter-

fer?ﬁa process €s much larger than the receiver white noise spectral

density, then (81) reduces to

S

B
s, = 2 005 (e0) (g () (82)

The loop phase error variance, under the assumption that the loop
is operating linearly for phase (large loop signal to noise ratio), is
given by

radians2 (83)

and, from (83) and (81)

1
5(By/B;)
2NJ] (84)

2 _ ., 2 1
O (M)[:(R/BN)‘(E/ND ' Ly(86)+(3)

Figure 12 shows simulation results for the case of narrow-band inter-
ference for binary phase-shift-keying (PSK). The equivalent square band-
width of the colored interference process is 275 HZ. The signal symbol
rate is 2500 baud. Thus the "bandwidth to bit-rate ratio" is BW/BR =
0.109. This is the same case for which extensive previous results were
reported.
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Figure 12. Simulation Results
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For the case of Figure 12, the ratio of signal power to additive
colored noise is unity, or zero dB. A phase-locked loop is implemer+ed,
as described in Sections II.5. and I1.6. The loop noise bandwidth is 2.5
Hz, being the smallest assumed to be practical for this case. The detec-
tor employs both additive noise tracking and multiplicative noise tracking
with the latter matched to a multiplicative noise bandwidth of 2.5 Hz.
Perfect identification is assumed for the colored additive noise.

From (84), the predicted value of loop phase jitter is determined to
be 5.4° r.m.s. The actual r.m.s. values recorded in the simulation were
between 1.7° and 9.6° for runs up to 1500 symbols in length. The loop was
observed to always be in lock, slipping no cycles during any run.

The results plotted in Figure 12 include the reference graphs of
coherent PSK detection for white noise only, and IDEI detection with per-
fect phase reference. Also, is shown the behavior of the standard
discrete-time matched filter detector. The matched filter is seen to
saturate at an error rate of 0.14, as usual [1]. The IDEI detector is
seen to yield a convex error rate curve for -10 dB < E/No.i 20 dB. How-
ever, for 20 dB < E/No, the slope of the error rate curve becomes much
less steep. Although the error-rate continues to decrease for increasing
E/No, the rate of decrease is not as good as was obtained for "pure"
multiplicative noise in [4].

The implications (or "cause") of the change in slope of the error rate
curve for 20 dB < E/No are, at present, unknown. Clearly, there is a
transition at E/NO = 20 dB for the case shown. It has been observed in
the past that such transitions may be due to the breakdown of basic
modeling assumptions on which the "optimum" detector is founded. One such
questionable assumption which is suspect here is that the multiplicative
noise process, due to carrier-tracking phase error, is Gaussian. Also, it
may be that the phase-tracking detection algorithm is subject to an ir-
reducible error-rate, as detailed in [8]. It is noted that the IDEI detec-
tor for multiplicative noise has not previously shown such an irreducible
error.

In conclusion, this simulation for the SJR = 0 dB case shows that niuch
of the performance measured previously for perfect phase is lost, when a
standard phase-locked loop is used in parallel with the IDEI detector. It

33

e o ———y =Yg E
e ——— ———— ~ ¥ !

7




; is recalled that this implementation is not the true optimum, for two
reasons. One is the Gaussian multiplicative noise approximation. The
second is that the phase-tracking loop is external to the detector and,

; thus, does not take advantage of the colored noise tracking capability of

: the detector itself. It may well be that a more optimum implementation

3 will result by imbedding the phase-estimation algorithm within the detector

itself.
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SECTION V
COMPLETE RECEIVER ALGORITHMS

1. A PROPOSED BIT SYNCHRONIZATION ALGORITHM

So far in the investigation of IDEI detection, it has been assumed
that bit timing information is available. This is important for the
detector in terms of setting the start and stop times of the computation
which produces the decision statistic, S(K). However, now the synchro-
nization problem is finally examined.

Many practical bit synchronizers are based on the "Delay-lock Loop,"
[6, 7]. This technique applies to any coherent signalling scheme, but
is generally used for phase-shift-keying (PSK). Generally, the implemen-
tation uses two signal cross-correlators driven with time-staggered signal
reference waveforms. The correlator outputs are time-staggered versions
of the noisy signal autocorrelation function. By subtracting the stag-
gered autocorrelation functions, a tracking error function is produced
which drives the reference genereator into bit synchronism with the
receiver signal.

The key to the functioning of the delay-lock bit synchronizer is
the production of a signal (from the correlator output) which is a pos-
itive, even function whose maximum occurs when the reference generator is
in synchronization with the received bit. Those positive even functions
(autocorrelation functions) also happen to be the sufficient statistics
for detection for the standard detectors which use delay-lack bit synchro-
nization.

In the IDEI detector, the sufficient statistic for detection is the
pseudo-innovations process, or noise tracking error. It was seen in [1]
that there was associated with the statistic a function which was positive,
with minimum value occuring for perfect identification of the required
noise statistics. With “"positive" or "negative" identification errors
(in the sense of Figures 36 and 43 of [1]), the function value increased.
The function was the variance of the noise tracking error.

Now, it is conjectured that the IDEI tracking error variance, which
js necessarily positive, will be minimum for the reference signal, s(k;n),
exactly synchronized with the received bit. It is also conjectured that
the variance will increase as the reference, s(k;n), becomes unsynchro-
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nized, regardless of whether 4(k; n) leads or lags the receivad bit. If
this conjecture proves true, then it is a simple matter to use the recip-
rocal of the tracking error variance in the same fashion that the Delay-
Lock Loop uses the autocorrelation function, to form a synchronization
tracking error function.

2. THE COMPLETE ALGORITHM

The complete IDEI algorithm (excluding identification) can be postu-
lated as follows, for binary signalling. See Figure 13. Two IDEI detec-
tors, with imbedded phase estimators are implemented, one with early
waveform reference signals and one with late. Each detector contains two
tracking filters of the form of Figure 7. In each detector are produced
the detection statistics, S0 and SI’ which are the tracking error
variances, conditioned on the two different received symbols, m=0 and
m=1, respectively. In each detector,symbol decision is made as usual.
Based on the symbol decision, the assumed correct tracking error variances,
§e and §£, are produced by the early and late detectors, respectively.
The reciprocal of each variance is taken and the results subtracted to
form a "Synch Control” driving signal, which is filtered with suitable
gain and time constant. A modulo-2 adder is implememted to determine if
the decisions in the early and late detectors do not result in the same
detected symbol. If not, the synch. control signal is inhibited, and
synch is maintained as previously. Decision-directed reinitialization
of the filters is carried out in the usual manner, independently in the
early and late detectors.
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SECTION VI
CONCLUSIONS

The research documented in this report has yielded several interest-
ing results. These are summarized below in the order of the governing
tasks in the Contract Statement of Work.

Task 4.

The IDEI (interference-tracking) detection algorithms were extended
to include provision of the required carrier phase reference through
phase tracking. A separate phase-locked Loop was implemented, process-
ing the received data in parallel with the detection algorithm, itself.
The detection algorithm was augmented to track the multiplicative noise
resulting from the phase reference variations, as well as tracking the
colored additive noise.

Task 5.

It was shown analytically that a non-coherent version of the IDEI
detection algorithm does not exist. This result is due to the feed-
back structure inherent in the IDEI tracking filter. The internal
dependency of the detection statistic on the unknown phase makes it
impractical to carry out the phase averaging necessary to obtain a non-
coherent type algorithm.

Task 6.
Based on the result of Task 5, a non-coherent IDEI detector for
Differential Phase Shift Keying is also impractical of derivation.

Task 7.

A bit synchronization technique was proposed, based on the Early-
Late method. This bit synchronization scheme then led to the postulation
of a complete receiver algortihm including interference-tracking,
phase estimation, and bit synchronization. A block diagram of the

algorithm was given.

Task 8.
The Monte Carlo simulation routine used and reported previously
(1, 4] was restructured and re-written. The routine was simplified con-
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siderably and was augmented to accomodate the new detection and phase-
tracking algorithms. The chief reason for this effort was to achieve
shorter run times in 1ine with restrictions imposed by the ASD Conputer
Facility (CDC-6600).

The performance of the IDEI detector with phase tracking was eval-
uated. It was found that the performance was considerabley degraded over
previous results for perfect phase references. Two possible causes for
the degradation were discussed.

In summary, further research on the IDEI algorithms is recommended
in the following areas. Most importantly, a method of phase estimation
should be sought wherein the phase estimator is imbedded in the inter-
ference tracking filter. The purpose is to reduce the effects of the
large additive colored noise upon the phase estimator. Rather than
tracking phase in parallel with the colored noise tracking filters, phase
should be tracked after the colored noise has been removed from the
data. Secondly, further effort should be devoted to optimizing the
multiplicative noise tracking filter for the non-Gaussian perturbétions
produced by the phase variations. Finally, the proposed bit synchroni-
zation algorithm should be studied and evaluated.
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APPENDIX A
THE CLOSED-FORM ERROR-
RATE PROGRAM

(This appendix contains listings of the newly written simulation
program and the closed-form error-rate evaluation program

reported previously.)
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THIS IS MAIN PROGRAM FOR THE CLOSED-FORM ERROR RATE FOR
IMPERFECT IDENTIFICATION WHICH IS A EXTENSION OF PROGRAM YOONMS
## REQUIRED SUBROUTINE #*#
(1) RES3 i MAIN, DATA, INPUT1, INPUTZ, PARALL, PREPAR
(2) CFERAT i CFERAT, WKFLT, ERF
(3) vVTIT i VTT, CAYLEY. GAUS
(4) EIGEN
(5) COMAT
REMARK
(1) CHECKING THE CLOSED-FORM ERROR RATE FOR PERFECT
IDENTIFICATION, SET IMODE 1 AVOIDING THE SAME EIQGEN~VALUE
IN SUB. CAYLEY
(2) TO GET THE STEADY-STATE KALMAN GAIN, SET KSMAX 50-100
IN GENERAL.
(3) ESTIMATED TRANSITION MATRIX PHEER AND DPHEE ARE VARYED
IN SUBROUTINE INPUT1 AND ESTIMATED KALMAN GAIN OGSTAR IS
VARYED IN SUBROUTINE INPUT2 EACH TIME.
PROGRAMMER
CHANG—JUNE YOON
ELECTRICAL ENGINEERING DEPT.
TEXAS A & M UNIVERSITY

COMMON/ORDER /N, N2

COMMON/SAMPLE/NSPB, TB, TBR

COMMON/OPTION/NOS, AEST
COMMON/RATIO/ENODB, ENODBR., SJURDB, SJRDBR
COMMON/GDB/GN, GNR, GJ: GJUR

COMMON/WORNOW/ IMODE, KSMAX, 10J

COMMON/FREQ/FZ, FP(3)
COMMON/PARAM/GAMMA (6, 2), PHEE (6, 6), H(2, 6), (2, 2),R(2,2)
COMMON/PARAMR/PHEER (6, 6), DPHEE (&, 6), GETAR (6, 2), BSTAR(2., 2)
CALL ASSIGN(S, ‘SY: RES3. DAT’, 11, ‘RDO’, ‘NC’, 1)

CALL DATA

NOPTN1
1, ND CHANGE
2, CHANGE ENODB
3, CHANGE SJRDBR
4, CHANGE NSPB, GK
NOPTN2
1, NO CHANGE
2, CHANGE ENODB
3, CHANGE SJRDBR
4, CHANGE GK
5, CHANGE SJRDB, SJRDBR
IF NOPTN1,NOPTN2 IS 1, THEN NCASE1l,NCASE2 IS 1 RESPECTIVELY
NCASE1 ; NUMBER OF CASE FOR NOPTN1
NCASE2 ; NUMBER OF CASE FOR NOPTNR2
IPARAM
0. NDO PRINT-OUT PARAMETERS AND STATISTICS IN INPUT: AND INPUT2
1, PRINT-OUT
16V
O, NO CALCULATION KALMAN GAIN FOR A CORRECT PARAMETERS INPUTI.
1, CALCULATION.

READ(S, 701) NOPTN1, NOPTN2, NCASE1, NCASE2, IPARAM, IGV
701 FORMAT(&615)
READ (S5, 702) GK
702 FORMAT(EL5. 6)
DO 2000 II=1, NCASE1
60 TO (1,2,3,4),NOPTN1
1 60 TO 50 0
2 READ(S, 705) ENODB

2
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ENODBR=ENODB
60 TO 50
3 READ(3, 705) SJRDBR
€0 70 S50
4 READ(3.707) NSPB,GK
30 CONTINUE
703 FORMAT(EL1DS. 6)
706 FORMAT(2E1S5. 6)
707 FORMAT(I5.E13. 6)

c
DO 1000 I1I=1, NCASE2
¢0 TO (11,12,13,14,15), NOPTN2
\ 11 60 TO &0
; 12 READ(S, 705) ENODB
d ENODBR=ENODB
! 60 TO &0
I’ 13 READ(5, 705) SJRDBR ,
: ¢0 TO 60
14 READ(S, 705) GK
G0 TO &0
15 READ(S, 706) SJRDB. SURDBR
60 CONTINUE
c

WRITE(6, 650) NSPB., TB, ENODB, SURDB, SURDBR, GK, AEST
3 650 FORMAT (2X, SHNSPB=, 15, 2X, 3HTB=, E13. 6, 2X, 6HENODB=, E13. &, 2X,
% 16HSJRDB=, E13. 6, 2X, 7HSURDBR=, E13. 6, 2X, 3HGK=, E13. 6, 2X, SHAEST=, E13. 6)
i CALL INPUTI1(IPARAM, IGV)
CALL INPUT2(IPARAM, GK)

CALL CFERAT(ERATCL)

WRITE(&, 651) ERATCL
' 651 FORMAT (2X, 26HCLOSED-FORM ERROR RATE 1S , 30X, 10H###x#%s#4=, E13. 6)
‘ 1000 CONTINUE
! WRITE(&, 751)
: 751 FORMAT(SX, 11HEND OF CASE, //)
2000 CONTINUE

STOP
END
c
SUBROUTINE DATA
COMMON/ORDER /N, N2
COMMON/SAMPLE /NSPB, TB, TBR
COMMON/OPTION/NOS, AEST
COMMON/RATIO/ENODB, ENODBR., SJRDB, SJURDBR
COMMON/WORNOW/ IMODE, KEMAX, 10J
COMMON/FREQ/FZ, FP(3)
C N:.N2 : SYSTEM ORDER
C NO8 : (1) PSK, (2) FSK
C AEST : SIGNAL MAGNITUDE IN SUB. REFGEN
C IMODE: (1) DIAGONAL PHEE MATRIX AND PERFECT IDENTIFICATION
c (2) DIAGONAL PHEE MATRIX
c (3) GENERAL IMPERFECT IDENTIFICATION
C  KSMAX: MAXIMUM NUMBER OF ITERATION FOR STEADY-STATE KALMAN GAIN
C IOV : (0) NO CALCULATION FOR CORRECT KALMAN GAIN AND VINDV IN INPUT!
C (1) CALCULATION FOR CORRECT KALMAN GAIN AND VINOV IN INPUT1
C FZ,FP: ZERO,POLE FREQUENCY FOR LOW-PASS FILTER

READ(S, 600) N, N2

READ(S, 601) NSPB, TB, TBR

READ(3, 602) NOS. AEST

READ(3, 603) ENODB, ENODBR, SJRDB. SURDBR

READ(5, 604) IMODE, K8MAX, I0J

READ(S, 603) FZ, (FP(I),I=1,3)

) 600 FORMAT(213) 4

601 FORMAT (I3, 2E13. 6)
602 FORMAT(13,E193. 6) -




RETURN
END

(2]

SUBROUTINE INPUT1(IPARAM, IGV)
TO GET THE REAL PARAMETERS AND STATISTICS GIVEN VALUES.
ALL WE NEED IN HERE ARE GAMMA, PHEE.H.R
GAIN AND VINOV ARE FOR REFERENCE
IF IGV : O — NO CALCULATION FOR CORRECT KALMAN GAIN AND VINOV
: 1 ~ CALCULATION FOR CORRECT KALMAN GAIN AND VINOV
3 THEREFORE GK ALWAYS SET 1..FOR PERFECT IDENTIFICATION.
E COMMON/ORDER /N, N2
L COMMON/SAMPLE/NSPB, TB.: TBR
3 COMMON/OPTION/NOS. AEST
F COMMON/RAT I0/ENODB., ENODBR, SJURDB: SJRDBR
:

§ — e Bttt ittt 3
7603 FORMAT (4ETS. &)~ o ’_" ' o | T o
604 FORMAT(31I5)

OoO0O0O0O00

COMMON/GDB/GN, GNR, GJ, GJR
COMMON/WORNOW/ IMODE, KSMAX, 10
COMMON/FREQ/FZ, FP(3)
COMMON/PARAM/GAMMA (6, 2), PHEE (6, 6) . H(2, 6), Q(2, 2), R(2,2)
i DIMENSION VINQV(2,2), GAIN(6. 2)
CALL PARALL (1., BN, GAMMA, PHEE, H, ENODB, SJURDE, GN, GJ, R, 16V
1. GAIN, VINOV)
IF(IPARAM. EQ. O) GO TO 40
WRITE (6, 610)
610 FORMAT (2X, 32H*REAL PARAMETERS AND STATISTICS#*, /)
DO 20 I=1,N
WRITE(6, 611) I,GAMMAC(I, 1), I,PHEE(I, 1), I,H(1,1)
611 FORMAT (2X, SHGAMD(, I1, 2H)=, E13. &, 2X, SHPHID(, I1,2H)=, E13. 6,
12X, 3HHT(, I1, 2H)=,E13. 6)
20 CONTINUE
IF(IGV.EQ. 0) €0 TO 40
WRITE(6, 615) GN
615 FORMAT(/, 2X, 3HGN=,E13. 6)
WRITE(6, 612)
612 FORMAT(/, 2X, SHGAIN=, 26X, 6HVINGV=)
DO 25 I=1, N2
IF(I.GT.2) 60 TO 30
WRITE(6, 613) (GAIN(I, J), J=1,2), (VINOV(I, J),J=1,2)
613 FORMAT (2X, 2E13. 6, 5X, 2E13. 6)
60 710 25
30 WRITE(6,614) (GAINC(I,J), J=1,2)
614 FORMAT(2X., 2E13. 6)
25 CONTINUE
40 CONTINUE
WRITE(&, 617) BN :
617 FORMAT(/, 2X, 21IHEQUIVALENT BANDWIDTH=, E13. 6. /)
RETURN
END

SUBROUTINE INPUT2(IPARAM, GK)
THIS SUBROUTINE GSTAR AND DPHEE FOR DIFFERENT FILTER BANDWIDTH
THESE GSTAR AND DPHEE WITH GAMMA, PHEE, H,R ARE USED TO CALCULATE
RESIDUAL VARIANCE IN SUBROUTINE CFERAT AND VTT.
THEREFORE IGV ALWAYS SET 1 HERE.
COMMON/ORDER /N, N2
COMMON/RAT10/ENODB, ENODBR, SURDB, SURDBR
COMMON/GDB/GN, ONR, GJ, GJR
COMMON/WORNOW/ IMODE, KSMAX, 10J !
COMMON/PARAM/GAMMA (6, 2), PHEE (&, ), H(2, &), (2, 2), R(2, 2) j
{ COMMON/PARAMR /PHEER (6, 6), DPHEE (&, &), 0STAR(6, 2), BSTAR (2, 2)
| DIMENSION GAMMAR (6, 2), RR(2, 2), VINOVR(2, 2) 1
CALL PARALL (GK, BNR, GAMMAR, PHEER, H, ENODBR, SJURDBR. GNR, GUR, RR i
1, 1, @STAR, VINOVR) ;
DO 10 I=1,N2
DO 10 J=1,N2 43 -

o000 2]




N

10 DPHEE(I, J)=PHEE(I, J)-PHEER(I, J)
IF(IPARAM. EQ. D) RETURN
WRITE (&, 600)
600 FORMAT (/, 2X, ASHESTIMATED PARAMETERS AND STATISTICS, /)
DO 20 I=1,N
WRITE(6.4601) I,GAMMAR(I, 1), I, PHEER(I, I), I, H(1,1),1,DPHEE(I, I)
1, I, 08TAR(I, 1) .
601 FORMAT(2X, ‘GAMDR(’, 11, ‘)=',E13. 6, 2X, '‘PHIDR(’, 13, ')=',E13. 6
1,2X, ‘HTR(’, 11, ')="',E13. 6, 5X, ‘DPHEE(’, I1, ‘)=',E13. 6, 2X, ‘GSTAR( '/
2, 11, )Y=',E13. §)
20 CONTINUE
WRITE(&., 602) BNR
602 FORMAT(/, 2X, 21HEQUIVALENT BANDWIDTH=, E13. &)
WRITE(6, 603) VINOVR(1,1)
603 FORMAT(/, 2X, 12HVINQVR(1, 1)=,E13. 6)
RETURN
END

SUBROUTINE PARALL (GK, BN, GAMMA, PHEE, H, ENODB, SURDB, GN, GJ, R, IGV
1, GAIN, VINGV)
COMMON/ORDER/N., N2
COMMON/OPTION/NOS, AEST
COMMON/SAMPLE/NSPB, TB, TBR
COMMON/WORNOW/ IMODE, KSMAX, 10V
COMMON/FREQ/FZ, FP(3)
DIMENSION FPR(3)
DIMENSION GAMD(3), PHID(3), HT(3)
DIMENSION CAMMA(6, 2),. PHEE (6, 6).H(2,6),0(2,2),R(2,2)
DIMENSION PVPT(6,6),06TG(6, 6), VEST (6, 6), VPRED(6, 6), HVHT (2, 2)
1, VINOV(2, 2), VINV(2, 2), VPHT (6, 2), GAIN(S6, 2), GH(6, &)
REAL IMGH(6, 6)
PI=A #ATAN(1.)
DELPHI=. 785
DELMEG=DELPHI*2. #P1/TB
IF(NDS.EQ.1) G0 TO 1
SUMF=0. O
DO 2 K=1, NSPB

2 SUMF=SUMF+(SIN( (K-, 5)#*TB#DELMEG/NSPB) )##%2
CONSTF=8QRT (BUMF )
ON=CONSTF#10. #% (—ENODB/20. )
¢0 TO0 3

1 CONSTP=SAGRT(NSPB/2. )*ABS(SIN(DELPHI))

ON=CONSTP#10. #%(—-ENODB/20. )

3 GJ=10. ##(-SJURDB/20. ) /8QRT(2. )
R(1, 1)=0N#u2
R(1,2)=0.0
R(2.,1)=0.0
R(2, 2)=ON##2
FZR=QU#FZ
DO 9 I=1,N

S FPR(I)=QK#FP(I)
T=TB/NSPB
CALL PREPAR(T, FZR. FPR, GAMD, PHID, HT, BN, I10U)
DO 10 I=1,N2
DO 10 J=1,2

10 CAMMA(I, J)=0.0
DO 11 I=1i,N
CAMMA (I, 1)=QAMD(I)

11 CAMMA(I+N, 2)=GAMD(I)

NEW WEIGHTED GAMMA MATRIX
DO 12 I=1,N2
DO 12 J=1,2

12 GAMMAC L, J)=CJnQAMMA(I., J)
DO 19 I=1,N2
DO 15 J=1, N2 44

19 PHEE(I,J)=0.0
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20

21

D014 I=T)N - ‘ T ' T -

PHEE(I, I)=PHID(I)
PHEE (I+N, I+N)=PHID(I)
DO 20 I=1.,2

DO 20 J=1.,N2
H(I,J)=0.0

DO 21 I=1,N

H(1, I)=HT(I)

H(2, I+N)=HT(I)

IF(IGV. EQ. O) RETURN

CALCULATE THE STEADY-STATE KALMAN-GAIN

32

36

35

DO 32 I=1,N2

DO 32 J=1,N2

VEST(1,J)=0.0

DO 35 KS=1, KSMAX

CALL MABCT(PHEE, N2, N2, VEST, N2, PHEE, N2, PVPT, &, 6, 6, 6, 6, 6., 6, &)

CALL MATMUL (2, GAMMA, N2, 2, GAMMA, N2, 6TG, 6, 2, 6, 2, 6: b)

CALL MATAS(1, PVPT, N2, N2, GTG, VPRED, &, 6)

CALL MABCT(H, 2, N2, VPRED, N2, H, 2, HVHT, 2: 6, 6, 6, 2, 6, 2, 2)

CALL MATAS(1,R, 2,2, HVHT, VINOV, 2, 2)

CALL MATMUL (2, VPRED, N2, N2, H. 2, VPHT., &, 6, 2: 6, 6, 2)

DET=VINOV(1, 1)#VINDV(2, 2)-VINOV(1, 2)#VINOV(2, 1)

VINV(1, 1)=VINOV(2, 2)/DET

VINV(1, 2)==VINOV(1, 2)/DET

VINV(2, 1)==VINOV(2, 1)/DET

VINV(2, 2)=VINOV(1, 1)/DET

CALL MATMUL (1, VPHT, N2, 2, VINV, 2, GAIN, 6, 2,2, 2, 6, 2)

CALL MATMUL (1, GAIN, N2, 2, H, N2, GH, 6, 2, 2, &6, 6, 6)

DO 36 I=1,N2

DO 36 J=1,N2

IMOH(I, J)=—CGH(I, J)

IF(1.EQ. J) IMGH(I, J)=1. 0-GH(I,J)

CONTINUE

CALL MATMUL (1, IMGH, N2, N2, VPRED, N2, VEST, &, 6, 6, &, 6, 6)

CONTINUE

RETURN

END

SUBROUTINE PREPAR(T,FZ,FP, GAMD, PHID, HT, BN, INOPT)

I A T I 6363 3663 3363 I I I I T3 3806 0 3 A0 U626 23361 6 SEIE 36038 I3 36 28

PREPAR: MODIFICATION SUBROUTINE ADDED 7O SUBROUTINE INPUT

TO PERFORM PRE-CALCULATIONS OF FILTER PARAMETERS

#1/0 PARAMETERS#*

#* INPUT %

T: SAMPLING TIME

FZ: ZERO FREQUENCY

FP: POLE PREQUENCIES (3)

INOPT: 1-DIGIT CODE FOR SELECTION OF REAL/COMPLEX ZERC
AND UNITY GAIN/VARIANCE FOR FILTER PARAMETER CALCULATIONS
=1, REAL ZERO, UNIT GAIN
=2, REAL ZERQ. UNIT VARIANCE
=3, COMPLEX ZERO,UNIT GAIN
=4, COMPLEX ZERO.UNIT VARIANCE

# OQUTPUT =

PHID: . FILTER TRANSITION WEIGHTS(3)

GAMD: FILTER INPUT WEIGHTS(3)

HT: FILTER OQUTPUT WEIGHTS(3)

BN: EQUIVALENCE NOISE BANDWIDTH

# INTERNAL FILTER PARAMETERS #

Z: ZERO FREQUENCY. IN RADIANS

P: POLE FREQUENCIES (3), IN RADIANS

R: RESIDUES(3)

RE: RESIDUES(3)

GAINK: OAIN CONSTANT 45

LI S22l el e I Al s 22l Yyttt eyt

DIMENSION FP(3),P(3),R(3),RE(3),PHID(3), OAMD(3), HT(3)
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anon

10

25

30

40

35

NEW WEIGHTED INPUT MATRIX

36

45

55
S0

100

PI=4, #ATAN(1. )
IF(INOPT. GT. 2) GO TO 100
FREQUENCY CALCULATIONS
I=(-2. Y#PINFZ

DO 1 I=1.3

P(I)m(-2. )#PI#FP(I)
RESIDUE CALCULATIONS

DO 5 I=1,3
D=1.

IF(I.EQ.J) €0 TO 10
D=D#(P(I)-P(J))
CONTINUE
R(I)=(P(1)-Z)/D
CONTINUE

TRANSITION WEIGHTS

DO 20 I=1,3
PHID(I)=EXP(P(1)%T)
INPUT WEIGHTS

DO 25 I=1,3

CAMD(I)N=(1. ~PHID(I))#R(I)/(-P(I1))
UNITY GAIN
IF(INOPT.NE. 1) 60 TO 30
CAINK=P (1 )#P(2)%P(3)/2
¢0 TO 35

CONTINUVE

UNITY VARIANCE

SuM=0. 0

DO 40 I=1,3

DO 40 J=1,3
SUM=SUM+CAMD (1) #CAMD(J) /(1. O—PHID(I)*PHID(J))
CAINK=1. /SGRT (SUM)

CONTINUVE

DO 36 I=1,3
CAMD(1)=QAINK#*QAMD(I)
OUTPUT WEIGHTS

DO 45 I=1,3

HT(I)=1,

EGQUIVALENT NOISE BANDWIDTH
DO 30 I=%,3

D=1.

DO 55 J=1,3

IF(I.EQ.J) €0 TO 53

DuD# (P (I)#82-P(J)#22)
CONTINUE
RE(I)=QAINK##2# (P () %#%2-Z#%2) /(2. #P(I)#D)

CONTINUVE

QO0=CAINK#Z/(P(1)#P(2)aP(3))

BN=(RE(1)4+RE(2)+RE(3)) /(2. #C0O##2)

RETURN v .
CONT INUE

MODIFIED TRANSFER FUNCTION HAVING COMPLEX ZERO.

FREQUENCY CALCULATION. -
I#e2uP (2)#02-2#P (1)#%3, TO HAVE A JW-AXIS ZERO, Z SHOULD BE POSITIVE

Im-2 wPI®FZ

P(1)=2

P(2)=8ART(J. )#P (1)

P(3)=-2. #PI#FP(3I)

FP(1)=P(1)/(-2. »P])

FP()=P(2)/(~-2. #PI)

FP(3)=P(3)/(-2. #PI)

RESIDUE CALCULATIONS

DO 110 I=1,3

D={. 46

DO 120 J=1,3
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120

110

125

130

135

150

140

IF{1.LEQ. IV OO YD 120 — — —  — —
D=D#(P(I1)-P(J))

CONTINUE

R(I)=(P(I)%%2+Z#%2)/D

CONT INUE

TRANSITION WEIGHTS

DO 125 I=1,3

PHID(I)=EXP(P(I)*T)

INPUT WEIGHTS

DO 130 I=1,3

CAMD(I)=(1. ~PHID(I))#R(1)/(1. O-PHID(I)#PHID(J))
UNITY GAIN

IFCINOPT.NE. 3) GO TO 135

CAINK=2. #PI#FP(1)#FP(2)#FP(3)/FZ#%2

Q0 TO 140

CONTINVUE

UNITY VARIANCE

SUM=0. 0

DO 150 I=1,3

DO 150 J=1,3
SUM=SUM+GAMD (1) #GAMD(J)/ (1. O-PHID(1)%PHID(J))
GAINK=1. /SGRT(SUM)

CONTINUE

C NEW WEIGHTED INPUT MARTRIX

141

155

170

160

DO 141 I=1,3

GAMD (1) =CGAINK#CAMD(I)
OUTPUT WEIGHT

DO 155 I=1,3

HT(I)=1.

EQIVALENT NOISE BANDWIDTH
DO 160 I=1,3

D=1.

DO 170 v=1,3
IF(I.EQ.J) 60 TO 170
D=D#*(P (1) #%#2-P(J)*%2)
CONTINUE

RE(I)=(=1.)%GAINK*##2#% (P(1)*%#2+Z#%#2)%¥%2/ (2. *P(I)*D)

CONTINUE

CO0=(—1. ) *GAINK®Z##2/ (P (1) %P (2) %P (3))
EN=(RE(1)+RE(2)+RE(3) ) /(2. #00#%2)
RETURN

END




oo

c

SUBROUTINE CFERAT(ERATCL)

EXTERNAL ERF

COMMON/ORDER /N, N2

COMMON/SAMPLE/NSPB, TB, TBR

COMMON/WORNOW/ IMODE, KSMAX, I0J

COMMON/PARAM/GAMMA (&, 2), PHEE (&, 6), H(2, 6),0(2,2),R(2,2)

COMMON/PARAMR/PHEER (b, 6) . DPHEE (6, 6), GSTAR( 6., 2), BSTAR(2, 2)

DIMENSION XEST1(6), XEST2(6), XPRED1(6), XPRED2(6)

DIMENSION SIG1(2), SIG2(2),ES1(2), ES2(2)

DIMENSION B1(2,300), VTTJ(2, 2), VTILDA(300)

DIMENSION VXX(6,6), TEMP(6,6),CTG(6, 8),F(b, 6): VXXT(H, 6), VXXT1(6,: 6)
1, VXXTR(6: 6), VXTXT(6, 6), VXTXT1(b, 6), VXTXT2(6, 6), VXTXT3(6, 6)
2, VXTXT4(6, 6), VXTXTS5(6, 6), GREG(&, 6), TEMP1 (6, 6)

REAL IMGH(&, 6)

CALL MATMUL (2, GAMMA. N2, 2, CAMMA, N2, TG, 6, 2, 6, 2, 6, &)
CALL MATMUL (1, GSTAR, N2, 2, H, N2, TEMP, 6, 2, 2, 6, 6, &)
DO 5 I=1,N2
DO 5 J=1,N2
IMGH(I, JH)=—TEMP (I, J)
IF(I. EQ. J) IMGH(I,J)=1. O-TEMP(I,J)
O CONTINUE
CALL MATMUL (1, PHEER, Nz, N2, IMGH, N2, F, 6, 6, 6, 6, 6, 6)

INITIALIZE VXX, VXXT AND VXTXT
DO & I=1,N2
DO 6 J=1,N2
VXX(I, J)=0.0
VXXT(I,J)=0.0
6 VXTXT(I,J)=0.0

DO 1 KS=1, KSMAX
VXX(K) = PHEE # VXX(K~1) * PHEE’ + GAMMA * Q * GAMMA’
CALL MABCT(PHEE, N2, N2, VXX, N2, PHEE, N2, TEMP, &, 6, 6, 6. 6, 6: 6, 6)
CALL MATAS(1, TEMP. N2, N2, GTG, VXX, 6, 6)
VXXT(K'!'K—1) = PHEE * VXXT(K-1'K-2) # F’ + PHEE # VXX(K) * DPHEE’
+ GAMMA * G » GAMMA’
CALL MABCT(PHEE, N2, N2, VXXT. N2, F, N2, VXXT1, 6, 6, 6, b, ¢t. b: bs b)
CALL MABCT(PHEE. N2, N2, VXX, N2, DPHEE, N2, VXXT2, &, &6, &, &, 6: 6: 6: 6)
CALL MATAS(1, VXXT1, N2, N2, VXXT2, TEMP, 6, 6)
CALL MATAS(1, TEMP, N2, N2, GTE, VXXT, &, 6)
VUXTXT(K+1'K) = F & UXTXT(K!K-1) * F’ + 2. % DPHEE % VXXT(K'K-1) * F~
+ DPHEE % VXX(K) * DPHEE’ + CAMMA * G # GAMMA’
+ PHEER # GSTAR # R % GBTAR’ % PHEER’
CALL MABCT(F., N2, N2, VXTXT, N2, F, N2, VXTXT1, 6, b, 6, &6, 6: 6, 6, 6)
CALL MABCT(DPHEE, N2, N2, VXXT, N2, F, N2, VXTXT2, 6, 6: 6, 6, b, 6, 6, 6)
DO 15 I=1,N2
DO 13 J=1, N2
13 VXTXT3(I, J)=VXTXT2(J, I} . .
CALL MABCT(DPHEE, N2, N2, VXX, N2, DPHEE. N2, VXTXT4, 6, 6, 6: 6, 6: 6, 6, 6)
CALL MABCT(GSTAR, N2, 2,R, 2, @STAR, N2, GRG. 6, 2, 2,2, 6, 2, 6, 6)
CALL MABCT(PHEER, N2, N2, 6RG, N2, PHEER, N2, VXTXTS5, &6, 6, &4, 6, 6, 6, 6, 6) -
CALL MATAS(1, VXTXT1, N2, N2, VXTXT2, TEMP, &, 6)
CALL MATAS(1, TEMP, N2, N2, VXTXT3, TEMP1, 6, 6)
CALL MATAS(1, TEMP1, N2, N2, VXTXT4, TEMP, 6, &)
CALL MATAS(1. TEMP, N2, N2, GTG, TEMP1, 6, &)
CALL MATAS(1, TEMP1, N2, N2, VXTXTS, VXTXT, 4, 6)
1 CONTINUE

DO 25 I=1, N2
XEST1(I1)=0.0
XEST2(1)=0.0
25 CONTINUE a8
8161 : ES(M=0,N=0)
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A=0. 0
DO 20 K=1, NSPB
CALL REFQEN(K, O, FTRO, €TRO, FRRO, ORRO)
CALL REFGEN(HK, 1,FTR1, GTR1, FRR1, ORR1)
SIe1(1)=FTRO~FRRO
SIG1(2)=0TRO~GRRO
S162(1)=FTRO~-FRR1
S162(2)=GTRO~GRR1
CALL WKFLT(K, XEST31, XPRED1. 5101, ES1)
CALL WKFLT(K, XEST2, XPRED2, 8102, ES2)
A=A+(ES2( 1) ##2+ES2(2) ##2-ES1 (1) ##2-ES1 (2) #42)
B1(1,K)=ES1(1)-ES2(1)
B1(2, K)=ES1(2)-ES2(2)
20 CONTINUE
"THE VII, INNOVATION VARIANCE, IS DECOUPLED, SO IS VTTJ SINCE
THE TEST SYSTEM IS DECOUPLED.
IF THE SYSTEM IS COUPLED, THEN THE EVALUATION OF MEAN AND VARIANCE
MUST BE MODIFIED.
DO 30 J=1, NSPB
L=J—-1
CALL VTT(L.F, VXTXT, VXXT, VTTJ)
VTILDA())=VTTJU(1, 1)
30 CONTINUE
B=0. 0
; DO 35 J=1, NSPB
3 DO 35 K=1,NSPB
! L=IABS (J-K)+1
3 B=B+(B1(1, J)#B1(1, K)+B1(2, J)*B1(2, K) )#VTILDA(L)
3 35 CONTINUE
: IF(B.LE.0.) GO TO 50

ot §
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s SIGMAB=SQRT(B)
‘ X=A/SI1GMAB
SUFX=X/(2. #SQRT(2.))
4 ERATCL=0. S#(1. —ERF (SUFX))
J WRITE (6, 600) A, SIGMAB, VTILDA(1), X
! 600 FORMAT(2X, ‘MU=‘,E13. 6:2X, ‘SIGMA=",E13. 6, 2X, 'VTT(0)="',E13. 6,
' 12X, ‘MU/S1I6MaA=", E13. 6)
RETURN
50 WRITE(6, 601)
601 FORMAT(2X, 20HVARIANCE IS NEGATIVE)
DO 60 I=1,NSPB
60 WRITE(6, 602) I,VTILDA(I),B1(1,1),B1(2,1)
602 FORMAT (2X, 7HVTILDAC(, I3, 2H)=, E13. 6, 2X, 1SHTRACKING ERROR=, 2E15. 6)
RETURN
END
SUBROUTINE WKFLT(KS, XEST, XPRED, SIG, V)
COMMON/ORDER /N, N2
COMMON/PARAM/GAMMA(GL, 2), PHEE (6, 6), H(2, 6), Q(2, 2), R(2, 2)
COMMON/PARAMR/PHEER (6, 6), DPHEE (6, 6), GSTAR (6, 2), BSTAR(2, 2)
i : DIMENSION XEST(6), XPRED(6), 816(2),V(2), ZHAT(2), 6V(6)
. CALL MATVEC (PHEER., N2, N2, XEST, XPRED, 6, 6)
CALL MATVEC(H, 2, N2, XPRED, ZHAT, 2, 6)
CALL VECAS(2,816, ZHAT, V, 2)
CALL MATVEC(GSTAR, N2.: 2, V, GV, 6, 2)
CALL VECAS(1, XPRED, GV, XEST, 6) !

gy T 2 W

Wt
LAy b s

RETURN
END

SUBROUTINE REFGEN(KS, M, FTR, TR, FRR, GRR)
COMMON/SAMPLE/NSPB, TB, TBR
COMMON/OPTION/NOS, AEST
TK=(KS-0. 5) /NSPB
TKRMOD=(TK-IFIX(TK))#TBR :
DELPHI=. 785 y
DELMEG=DELPHI#8. *ATAN(1. ) /TB

IF(NOS.NE. 1) @0 TO 1 49 -
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IF(M. EQ. O) PHEE IR=DELPHI

IF(M. EQ. 1) PHEETR=-DELPHI

00 TO 2

IF(M. EQ. 0) PHEETR=DELMEG#TKRMOD

IF(M. EQ. 1) PHEETR=-DELMEGC#TKRMOD

FTR=COS(PHEETR)

OTR=SIN(PHEETR)

FRR=AEST#COS (PHEETR)

CRR=AEST#SIN(PHEETR)

RETURN

END

FUNCTION ERF(X)

THIS IS AN APPROXIMATION OF ERROR FUNCTION HAVING
LESS THAN 1. 5E-7 ERROR AND ASSUMED X I8 POSITIVE
ERROF FUNCTION IS SYMMETRIC

P=0. 32735911

Al=0. 234829592

A2=-0. 284496736

A3=1. 421413741

A4=—1. 4353152027

AS=1. 061405429

XX=ABS(X)

Tmg. /(1. +PRXX)

ERF=1, —(AL1#T+A4THa2+AZ#THAI+A4#THREG+ASRTH X5 ) #EXP (- XX#22)
IF(X. GE. 0. ) ERF=ERF

IF(X.LT.0.) ERF=-ERF

RETURN

END

50
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SUBROUTINE VTT(JP, F, VXTXT, VXXT, VTTJ)
COMMON/ORDER/N, N2
COMMON/WORNOW/ IMODE. KSMAX, 10J
COMMON/PARAM/CAMMA (&, 2), PHEE (6, 6),H(2,6),0(2,2), R(2: 2)
COMMON/PARAMR/PHEER (&, 6), DPHEE (4, 6), GSTAR (6, 2). BSTAR(2, 2)
DIMENSION F (&, 8), VXTXT(6, 6), VXXT(6,6),VTTJI(2, 2)
DIMENSION VHT (6, 2), HVHT(2, 2), B1(6, 2), B2(6, 2), B3(6, 2)
1,B4(4,2).85(2,2). TEMP (6, 6),FL(b, b)
DIMENSION PHEEJ(6,6),V(6,6),V1(4,6),V2(6,6),V3(6,6),VA(2,2)
IF(JP) 1,2,3

1 WRITE(6,11)

- 11 FORMAT(2X. 2BHNEGATIVE J POWER IN VTIT SUB.)

RETURN

2 CALL MABCT(H, 2, N2, VXTXT, N2: H, 2: HVHT, 2, 6. 6, 6, 2: 6, 2, 2)

¢ CALL MATAS(1,HVHT, 2. 2, R, BSTAR, 2, 2)
DO 4 1=1,2
DO 4 u=1.,2
4 VTTJ(I, Jy=BSTAR(I, J)

RETURN

3 CONTINUE

C LV#*H —~GSTAR # ( H# V # H’ + R ) 1]
CALL MATMUL (2, VXTXT, N2, N2, H, 2, VHT, 6, &, 2: 6, 6, 2)
CALL MATMUL (1, GSTAR, N2, 2, BSTAR, 2,81, 6., 2,2, 2, 6, 2)
CALL MATAS(2, VHT, N2, 2, B1, B2, 6, 2)

C PHEER #* [ V % H' — GSTAR # ( H # V # H’ + R ) 1
CALL MATMUL (1, PHEER, N2, N2, B2, 2, B3, 6, 6. 6, 2, 6, 2)

€ F =L PHEER # ( I — GSTAR # H ) J#x(J-1)
CALL CAYLEY(IMODE,F, JP-1,FL)

C H #* Fu#x(J—~1) # PHEER # [ V * H' - B 1]
CALL MATMUL (1, FL, N2, N2, B3, 2, B4, 6, 6: 6., 2,6, 2)
CALL MATMUL(1,H,) 2,N2,B4, 2,89, 2,6, 6, 2:2,2)
IF(IMODE. EQ. 1) GO Ta 100

C SUML F#x(1-1) % DPHEE # PHEE#®»(J-1) 1
DO S5 I1=1,N2
DO 5 I2=1,N2
S TEMP(I1,12)=0.0
DO 10 I=1,JP
L1=I-1
L2=JP -1
CALL CAYLEY(IMODE,F.L1,FL)
CALL CAYLEY(IMODE. PHEE, L.2, PHEEJ)
CALL MATMUL (1, FL, N2, N2, DPHEE, N2, V1, 6, 6, 6, 6, 6, 6)
CALL MATMUL (1. V1, N2, N2, PHEEW, N2, V&, &, 6, &/ 6, 6, 6)
CALL MATAS(1, TEMP, N2, N2, V2, V, &/ 6)
DO 15 II=1,N2
DO 15 JJ=1, N2
TEMP(II, JJ)=V(II1,JJ)
15 CONTINUE
10 CONTINUE
C SUML F##(I-1) % DPHEE % PHEE##(J-I) 1 * VXXT
CALL MATMUL (1, V, N2, N2, VXXT, N2, V3, &, 6, 6, 6, 6, &)
C H % SUML F#x(I-1) #* DPHEE #* PHEE#*#(J~I) 1 # VXXT # W’
CALL MABCT(H, 2, N2, VI, N2, H, 2, V4, 2,6, 6, 6,2, 6,2, 2)
CALL MATAS(1,B5, 2,2, V4, VTTJ, 2, 2)
RETURN
100 DO 110 I=1,2
DO 110 J=1,2
VTTJ(I, JI=BS(I, J)
110 CONTINUE
RETURN
END
p SUBROUTINE CAYLEY(IMODE, F,L,FL) 5)
| i C THIS SUBROUTINE PRODUCE THE MATRIX HIGH POWERED USING
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CAYLEY-HAMILTON‘S THEOREM TO REDUCE IHE ERRUR.

IMODE
(1) AND (2) : F 1S DIAGONAL MATRIX SOTHAT 1T HAS SAME EICEN-VALUE.
THIS REGQUIRE SPECIAL GAUS SUBROUTINE TO SOLVE THE LINEAR EQUATIONS.

OOO0O0O0O00

() : F I8 GENERAL MATRIX AND HAS THE DISTINCGUISHED
EICEN-VLAUVE

p F INPUT MATRIX TO BE MULTIPLIED BY HIGH POWER

! FL RESULTANT MATRIX

COMMON/ORDER/N. N2

COMPLEX EV(6),A1(6,6),B1(6),ALFALSL), FL1(b6,4), CMPLX
DIMENSION F(6,6),A(12,12),B(12), X(12),FL(6,6),FP (b, 6, 6)
DIMENSION SF (6, 6)

IF(L) 1.2,3

: 1 WRITE(6: 4)
\ 4 FORMAT(’ NECATIVE L IN SUB. CAYLEY')
. RETURN
] 2 DO 5 I=1,N2
; DO 5 J=1,N2

FL(I,0)=0.0
; IF(1.EQ. J) FL(I,J)=1.
i 5 CONTINUE
i RETURN
3 CONTINUE
IF(L.NE. 1) 60 TO 7
DO & I=1,N2
: DO 6 J=1,N2
; FL(I, J)=F (I, J)
& CONTINUE
RETURN
7 CONTINUE
IF(IMODE. NE. 3) €0 TO 150
N4x=N»*4
3 CALL EIGEN(F,N2; EV)
3 C USING GAUSS ELIMINATION METHOD, COMPLEX MATRIX CONSISTED WITH
C EIGENVALUES 1S PARTITIONED.
: DO 20 I=1,N2
DO 10 J=1,N2
10 ALCI, JI=EV(I)##(J-1)
20 B1(I)=EV(I)##l
DO 40 I=1,N2
DO 30 J=1,N2
ACI, J)=REAL(A1(I, J))
AT, J*N2)=—AIMAG(AL (I, J))
ACI+N2, J)=AIMAG(AL(I, J))
ACT+N2, J+N2) =REAL (A1 (1, U))
30 CONTINUE
B(I)=REAL(B1(I))
B(I+N2)=AIMAG(B1(I))
40 CONTINUE
CALL OAUS(A, B, X, N4, IERROR)
C OENERATE THE COEFFICIENTS OF CHARACTERISTIC FUNCTION
DO 50 I=1,N2
ALFA(I)=CMPLX(X(I), XCI+N2))
80 CONTINUE
C CAYLEY-HAMILTON’S THEOREM
DO 70 I=1,N2
DO 70 J=1, N2
FP(I,J, 1)=0.0
IF(I. EQ. J) FP(I,J, 1)=1.
70 CONTINUE
DO 75 I=1,N2
DO 75 J=1,N2
FP(I. U 2)=F(1,J)
7% CONTINUE
NM2=N-2 50
IF(NM1) 90,90, 99
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95

80

90

100

120
110

130

150

152

210

220

230

240

250

270

275

299

285
280

DO HO NP3, N T “” T

DO 85 I=i,N2

DO 85 J=1, N2
FP(I,J:NP}=0.0

DO 85 M=1, N2
FP(I.J:NP)=FP (I, J,NP)+FP (I, M) NP—1)#F (M, J)
CONTINUE

CONTINUE

CONTINUE

DO 100 I=1,N2

DO 100 J=1,N2

FL1(I, J)=CMPLX(0.0,0.0)
CONT INUVE

DO 110 NP=1,N

DO 120 I=1,N2

DO 120 J=1,N2

FLICI, J)=FL1(I, DD +ALFAINP)*FP (1, J, NP)
CONTINUE

CONTINUE

DO 130 I=1,N2

DO 130 J=1,N2
FL(I,J)=REAL(FL1(I,J))
CONTINUE

RETURN

CONTINUE

DO 152 I=1,N

DO 152 J=1.N

SF(I, N=F(I,J)

CALL EIGEN(SF, N, EV)

DO 220 I=1,N

DO 210 J=1,N

AL(I, I=EV(I)#%(J-1)
B1(I)=EV(I)#xL

DO 240 I=1,N

DO 230 J=1,N

A(I, J)=REAL(A1(I,J))
A(I, J*N)=-AIMAG(AL(I, J))
A(I+N, J)=AIMAG(ALI (I, J))
A(I+N, J+N)=REAL (A1 (I, J))
CONTINUE
B(I)=REAL(B1(I))
B(I+N)=AIMAC(B1(I))
CONTINUE

CALL GAUS(A, B, X, N2, IERROR)
DO 250 I=1,N
ALFA(I)=CMPLX(X(I), X(I+N))
CONTINUE

Do 270 I=1,N

DO 270 J=1.N
FP(1,J,1)=0.0

IF(1.EQ. J) FP(I.,J, 1)=1.
CONTINUVE

DO 275 I=1,N

DO 275 J=1.,N
FP(I,J,2)=8F(1.,J)
CONTINUE

NM2=N-2

IF(NM2) 290, 290, 295

DO 280 NP=3. N

DO 285 I=1,N

DO 285 J=1,N
FP(I,J)NP)=0.0

DO 285 M=1,N
FP(1,J.NP)=FP(1,J,NP)+FP(I, M, NP-,)#SF(M, J)
CONTINUE

CONTINUE
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290 CONTINUE
DO 300 I=1i,N
. DO 300 J=1,N
: FL1(I, J)=CMPLX(0. 0, 0. 0)
300 CONTINVE
DO 310 NP=1,N
DO 320 I=1,N
DO 320 J=1,N
FL1CI, Ji=FL1 (I, J)+ALFA(NP) #FP (1, J, NP)
320 CONTINUE
: 310 CONTINUE
y DO 330 I=1,N
~ DO 330 J=1,N
FL (1, V)=REAL(FL1(1, J))
FLCI+N, J+N)=REAL (FL1(1,J))
FL(I+N, J)=0. 0
FL(I, J#N)=0. O
330 CONTINUE
RETURN
END
SUBROUTINE GAUS (A, B, X. N, IERROR)
DIMENSION A(12,12),B(12), X(12)

e Vel My

c
C THIS SUBROUTINE IS IN ‘NUMERICAL ANAYSIS’ BY L.W. JOHNSON AND R.D.
C RIESS :1977 BY ADDISON-WESLEY PUB. CO.
3 C SUBROUTINE QAUS USES GAUSS ELIMINATION (WITHOUT PIVOTING) TO SOLVE
3 C THE SYSTEM AX=B. THE CALLING PROGRAM MUST SUPPLY THE MATRIX A, THE
: C VECTOR B AND AN INTEGER N (WHERE A IS (NXN). ARRAYS A AND B ARE
3 C DESTROYED IN QAUS. THE SOLUTION IS RETURNED IN X AND A FLAG. IERROR,
\ C IS SET TO 1 IF A IS NON-SINGULAR AND IS SET TO 2 IF A IS SINGULAR.
3 C TO GET MORE ACCURATE SOLUTION. CALL SUBROUTINE RESCOR AFTER GAUS.
c
NM1=N-1
: PO S I=1,NM1
: c
i C SEARCH FOR NON-ZERO PIVOT ELEMENT AND INTERCHANGE ROWS IF NECESSARY.
C IF NO NON-ZERQ PIVOT ELEMENT IS FOUND, SET IERROR=2 AND RETURN
c
DO 3 u=I,N
IF(A(J, 1).EQ.0.) 60 TO 3
DO 2 K=I,N
TEMP=A(I, K)
ACT, KImA(Y, K)
2 AlJ, K)=TEMP
TEMP=B(I)
. B(I)=B(J))
E B(J))=TEMP
‘ 60 TO 4
3 CONTINUE
60 TO B8
c
C ELIMINATE THE COEFFICIENTS OF X(I) IN ROWS I+1i,....,N
c
4 IPi=I+1
DO 9 K=IP1,N
a=-A(K, I)/7A(1, 1)
A(K, 1)=0.0
B(K)=@#B(I)+B(K)
DO 5 J=IP1,N
3 AK, JI=QRA(T, J)+A(K, J)
IF(A(N.N).EQ.0.) G0 TO & ‘
c
C BACKSOLVE THR EGQUIVALENT TRIANGULARIZED SYSTEM, SET IERROR=1,
C AND RETURN ;
c 54
X(N)=B(N)/A(N, N)
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DO 7 K=1,NM1
@=0.
NMK=N-K
DO &6 JU=1. K

6 Q=Q+A(NMK, NP1-J)#X(NP1-J)

7 X(NMK)=(B(NMK)-Q)/A(NMK, NMK)
IERROR=1
RETURN

8 IERROR=2
RETURN
END
SUBROUTINE EIGEN(A, N, EVALUE)
DIMENSION A(6,46),RR(6),RI(6), IANA(36), AT(36)
COMPLEX CMPLX, EVALUE(&)
DO 6 I=1,N

U DO 7 J=1,N

K=N#(I-1)

7 AT(J+K)=A(I, J)

& CONTINUE
CALL HSBG(N, AT, N)
CALL ATEIG{N., AT:.RR, RI. IANA; N)
DO 5 I=1,N
EVALUE(I)=CMPLX(RR(I1),RI(I))

c WRITE (6, 500)
C 500 FORMAT(5X, ‘THE EIGENVALUE IS’)
c WRITE(6, 600)
C 600 FORMAT (10X, ‘REAL ROOT’, 15X, ‘IMAG ROOT')
c WRITE (6, 700) RR(I),RI(I)
C 700 FORMAT (5X,E15.6,14X,E15. &)
5 CONTINUE
RETURN
END
c SUBROUTINE HSBG HSBEG 40
c PURPOSE HSBG &0
c TO REDUCE A REAL MATRIX INTO UPPER ALMOST TRIANGULAR FORM HSBG 70
c USAGE HSBG <0
c CALL HSBG(N. A, IA) H8BEG 100
c DESCRIPTION OF THE PARAMETERS HSBG 120
c N ORDER OF THE MATRIX HSBG 130
C A THE INPUT MATRIX, N BY N HSBG 140
c 1A SIZE OF THE FIRST DIMENSION ASSIGNED TO THE ARRAY HSBG 150
c A IN THE CALLING PROGRAM WHEN THE MATRIX IS IN HSBG 140
c DOUBLE SUBSCRIPTED DATA STORAGE MODE. IA=N WHEN H8BG 170
c THE MATRIX IS IN SSP VECTOR STORAGE MODE. HSBG 180
c HSBG 190
c REMARKS HSBE 200
c THE HESSENBERG FORM REPLACES THE ORIGINAL MATRIX IN THE HSBG 210
c ARRAY A, HSBG 220
c HSBC 230
. c SUBROUTINES AND FUNCTION SUBPROGRAMS REGUIRED HSBG 240
c NONE HSBG 250
c HSBG 240
C METHOD ' HSBG 270 i
C SIMILARITY TRANSFORMATIONS USING ELEMENTARY ELIMINATIDN HSBG 280 j
c MATRICES, WITH PARTIAL PIVOTING. HSBG 290 i
c HSBG 300 i
c REFERENCES HSBG 310
c J.H. WILKINSON - THE ALGEBRAIC EIGENVALUE PROBLEM - H8BC 320
c CLARENDON PRESS, OXFORD, 19635. H8BG¢ 330
c HEBBG 340
10 HSBC 350
c HSBG 340
SUBROUTINE HSBG(N, A, IA) HBBG 370

DIMENSION A(36) _
L=N 55 HBBO 400 4
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S50

60

80

100

120

140

160

180
200

220
240

NIA=L®IA
LIA=NIA-IA

L IS THE ROW INDEX OF THE ELIMINATION

IF(L"G) 360' 40, 40
LIA=sLIA-IA

Li=L~}

L2=L1-1

SEARCH FOR THE PIVOTAL ELEMENT IN THE LTH ROW

ISUB=LIA+L
IPIV=]18UB—-1A
PIV=ABS(A(IPIV))
IF(L-3) 90,90, 50
M=IPIV-IA

DO 80 I=L.M, 1A
T=ABS(A(I))
IF(T-PIV) 80, 80. 60
IPIV=1

PIV=T

CONT INUE

IF(PIV) 100,320,100
IF(PIV-ABS(A(ISUB))) 180, 180, 120

INTERCHANGE THE COLUMNS

M=1PIV-L

DO 140 I=1,L
J=M+1

T=A(D)
K=LIA+I
A(J)=A(K)
AlR)=T

INTERCHANGE THE ROWS

=1 2-M/1A

DO 160 I=L1,NIA, IA
T=A<I1)

J=1-M

A(L)=A())

A(J)=T

TERMS OF THE ELEMENTARY TRANSFORMATION

DO 200 I=L.LIA,IA
AlT)=A(T)/ALISUB)

RICHT TRANSFORMATION

J=—1A

DO 240 I=1,L2

J=J+1A

Ly=L+J

DO 220 K=1,L1

K=K +J

KL=K+LIA

ARSI =AKJI)I-A(LJ)RAIUL)
CONT INVE

LEFT TRANSFORMATION

K=—-1A
PO 300 I=1,N

56

HSBe
HSBG
HSBG
HSBG
HSBC
HSBG
HSBG
HSBG
HSBG
HSBC
HSBG
HSBG
HSBC
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBE
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HSBG
HS5BG
HSBG
HSBQ
HSBG
HSBG
HSBG

410
420
430
440
450
460
470
480
4%0
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
560
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940

950 °

9460
970
980
990

HSBG 1000
HSBG1010
HSBG1020
HSBG1030
HSBG1040
HSBG1050
HSBG1060
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LK=K+L 1 HSBG1080
S=A(LK) HEBG10%90 :
Lu=L-1A HEBG1100 ;
DO 280 J=1,12 HSBG1110 !
K=K+ HSBG1120
. Lu=LJ+1A HSBG1130
& 280 S=S+A(LJ)*A(JK)*1. ODO HSBG1140
¥ 300 A(LK)=S HSBG1150
g Cc HSBG1160
Cc SET THE LOWER PART OF THE MATRIX TO ZEROD H8BG1170
Cc HSBG1180
DO 310 I=L,LIA, IA HSBG1190
E . 310 A(I)>=0.0 HSBG1200
z 320 L=L1 HSBG1210
i G0 TO 20 HSBG1220
E 360 RETURN HSBG1230 ,
; END HSBG1240  §
! c ATEI 10
: C ATEI 20
c ATEI 30
c SUBROUTINE ATEIQ ATEL 40
c ATEI 50
c PURPOSE ATEI 60
c COMPUTE THE EIGENVALUES OF A REAL ALMOST TRIANGULAR MATRIX ATEI 70
C ATEI 80
: c USAGE ATEL 90
, Cc CALL ATEIG(M, A, RR, RI, IANA, 1A) ATEI 100
¢ Cc ATEI 110
¥ c DESCRIPTION OF THE PARAMETERS ATEI 120
1 c M ORDER OF THE MATRIX ATEI 130
P (o A THE INPUT MATRIX, M BY M ATEI 140
; c RR VECTOR CONTAINING THE REAL PARTS OF THE EIGENVALUES ATEI 150
R Cc ON RETURN ATEI 160
i C RI VECTOR CONTAINING THE IMAGINARY PARTS OF THE EIGEN- ATEI 170
i C VALUES ON RETURN ATEIl 180
| c IANA  VECTOR WHOSE DIMENSION MUST BE GREATER THAN OR EQUAL ATEI 190
c TO M, CONTAINING ON RETURN INDICATIONS ABOUT THE WAY ATEI 200
- c THE EIGENVALUES APPEARED (SEE MATH. DESCRIPTION) ATEI 210
: c 1A SIZE OF THE FIRST DIMENSION ASSIGNED TO THE ARRAY A ATEI 220
! c IN THE CALLING PROGRAM WHEN THE MATRIX IS IN DOUBLE ATEI 230
b c SUBSCRIPTED DATA STORAGE MODE. ATEI 240
: c IA=M WHEN THE MATRIX IS IN SSP VECTOR STORAGE MQDE. ATEI 250
c ATEI 260
c REMARKS ATEI 270
c THE ORIGINAL MATRIX IS DESTROYED ATE1 280
c THE DIMENSION OF RR AND RI MUST BE GREATER OR EQUAL TO M ATEI 290
c ATEI 300
c SUBROUTINES AND FUNCTION SUBPROORAMS REQUIRED ATEI 310
Cc NONE ATEI 320
. c ATEI 330
c METHOD ATEI 340
(o GR DOUBLE ITERATION ATEI 350
.o ATEL 360
c REFERENCES ATEI 370
Cc J.C.F. FRANCIS - THE GR TRANSFORMATION---THE COMPUTER ATEI 380
c JOURNAL, VOL. 4, NO. 3, OCTOBER 1961, VOL. 4, ND. 4, JANUARYATEI 390
c 1962. J. H. WILKINSON - THE ALGEBRAIC EIGENVALUE PROBLEM - ATEI 400
c CLARENDON PRESS, OXFORD, 1965. ATEI 410
c ATEI 420
e ATEI 430
c - ATEI 440
SUBROUTINE ATEIG(M, A, RR, RI, IANA, IA) ATEL 450
DIMENSION A(36),RR(&),RI(&), PRR(2), PRI(2), IANA(36) 1
. INTEGER P,P1,Q ATEI 470
l c o 57 ATEL 480 3




c
c
¢

20

30
c
c
Cc
C
c
c
C

40
c
c
c
c
c
c
c
c
Cc

&0

63

&7

68

70

73

80

100

110

{ 120

E7=1. Ot-8
E6=1. OE~-6
E10=1. OE-10
DELTA=0. 5
MAXIT=30

INITIALIZATION

N=M

N1i=N-1

IN=N1#1A

NN=IN+N

IF(N1) 30,1300, 30
NP=N+1

ITERATION COUNTER
IT=0

ROOTS OF THE 2ND ORDER MAIN SUBMATRIX AT THE PREVIOUS
ITERATION

DO 40 I=1,2
PRR(I)=0.0
PRI(I)=0.0

LAST TWO SUBDIAGONAL ELEMENTS AT THE PREVIOUS ITERATION

PAN=0. O
PAN1=0. 0

ORIGIN SHIFT

R=0. O
S5=0. 0

RODTS OF THE LOWER MAIN 2 BY 2 SUBMATRIX

N2=N1-1

INi=IN-IA

NN1=IN1+N

N1N=IN+N1

NiIN1=IN1+N1
T=A(N1IN1)-A(MNN)

U=T»T

V=4, O#A(NIN) ®#A(NN1)
IF(ABS(V)-U=E7) 100, 100, 65
T=U+V
IF(ABS(T)-AMAX1 (U, ABS(V))#ES) 67, 67, 68
T=0.0
U=(ACNIN1)+A(NN)) /2.0
V=8GART(ABS(T))/2. 0
IF(T) 140, 70. 70

IF(Y) 80,735,795

RR (N1)=U+V

RR(N)=U-V

€0 70 130

RR(N}1)=U-V

RR(N)=U+V

60 TO 130
IF(T)120, 110, 110
RR(N1)=A(NIN1)
RR(N)=A(NN)

€0 TO 130
RR(N1)=A(NN)

RR(N)=A(NIN1) 58
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ATEI 430
ATEI 500
ATEI 510
ATEI 520
ATEI 530
ATEI 540
ATEI 550
ATEI 560
ATEI 570
ATEI 580
ATEI 590
ATEI 600
ATEI 410
ATEI 620

ATEI 630

ATEI 640
ATEI 650
ATEI 660
ATEI &70
ATEI 680
ATEI &90
ATEI 700
ATEI 710
ATEI 720
ATEI 730
ATEI 740
ATEI 750
ATEI 760
ATEI 770
ATEI 780
ATEI 790
ATEI 800
ATEI 810
ATEI 820
ATEI 830
ATEI 840
ATEI 850
ATEl 840
ATEI 870
ATEI 880
ATEI 890
ATEI <00
ATEl 910
ATEI 920
ATEI 930
ATEI 940
ATEI 950
ATEI 960
ATEI 970
ATEI 980
ATE1 990
ATEI1000
ATEI1010
ATEI1020
ATEI1030
ATEI1040
ATEI1030
ATEI1060
ATEI1070
ATEI1080
ATEI1090
ATEI1100
ATEI1110
ATEI1120
ATEI1130
ATEI1140
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140

160

180

240
2%0
260
300

320

340
360

440

460

480

500

520

529

530

RITND=0. O~~~ 7 3 o
RI(N1)=0.0

G0 7O 160

RR(N1)=U

RR(N)=U

RI(N1)=V

RI(N})=~V

IF (N2) 1280, 1280. 180

TESTS OF CONVERGENCE

NIN2=N1IN1-IA

RMOD=RR (N1)*RR(N1)+RI(N1)*RI(N1)

EPS=E10#SQRT (RMOD)

IF (ABS(A(N1N2))-EPS) 1280, 1280. 240
IF(ABS(A(NN1))-E10#ABS(A(NN))) 1300, 1300, 250
IF(ABS(PAN1-A(NIN2) )-ABS(A(N1IN2))*E6) 1240. 1240, 260
IF (ABS(PAN-A(NN1))-ABS(A(NN1))*E&) 1240, 1240, 300
IF(IT-MAXIT) 320, 1240, 1240

COMPUTE THE SHIFT

J=1

DO 360 I=1,2

=NP~1 ‘
IF(ABS(RR(K)—PRR(I))+ABS(RI(K)-PRI{I1))-DELTA®*(ABS(RR(K))

1 +ABS(RI(K)))) 340, 360. 360

J=Jd+1

CONTINUE

G0 TO (440, 4460, 440, 480), J
R=0.0

§=0.0 -

¢0 TO 500

JaN+2-J

R=RR(J)#*RR(J)
S=RR(J)+RR(J)

€60 7D 500

R=RR (N)#RR(N1)-RI(N)*RI(N1)
S=RR (N)+RR(N1)

SAVE THE LAST TWO SUBDIAGONAL TERMS AND THE ROOTS OF THE
SUBMATRIX BEFORE ITERATION

PAN=A(NN1)
PAN1=A (N1IN2)
DO 520 I=1,2
K=NP-1
PRR(I)=RR(K)
PRI(I)=RI(R)
SEARCH FOR A PARTITION OF THE MATRIX, DEFINED BY P AND @
P=N2
IPI=N1N2
IF (N-3) 400, 600, 5235
IPI=NiN2
DO 380 J=2, N2
IPI=IPI-1A-1
IF(ABS(A(IPI1))-EPSB) 600, 400, 330
IPIP=IPI+1A
IPIP2=IPIP+IA
DoACIPIP)#(A(IPIP)-8)+A(IPIP2)#A(IPIP+1)+R
IF (D) 340, 560, 540

B TSTéifIBU-

ATEI1160
ATEI1170
ATEI1180
ATEI1190
ATEI1200
ATEI1210
ATEIL1220
ATEI1230
ATEI1240
ATEI1250
ATEI 1260
ATE11270
ATEI 1280
ATEI 1290
ATEI1300
ATEI1310
ATEI1320
ATEI1330
ATEI1340
ATEI1350
ATEI 1360
ATEI1370
ATEI1380
ATEI1390
ATEI11400
ATEI1410
ATEI1420
ATEI 1430
ATEI 1440
ATEI 1450
ATEI1440
ATEI1470
ATEI 1480
ATEI1490
ATEIL1500
ATEI1510
ATEI1520
ATEI1S530
ATEI1 340
ATEI135350
ATEI1360
ATEI1570
ATEI1380
ATEI1590
ATEI1600
ATEI1610
ATEI1620
ATEI1630
ATEI14640
ATEI1650
ATEI 14640

ATEI14670 |

ATEI1480

ATEI16%0
ATEI1700
ATEI1710
ATEIL720
ATEI1730
ATEI1740
ATEI1730

340 IF(ABS(A(IPI)®A(IPIP+1))#(ABS(A(IPIP)+A(IPIPR2+1)-8)+ABS(A(IPIP2+2)ATEI174&0

560

1 )) -ABS(D)®EPS) 620, 620, 560
P=Ni-J

59

ATEIL1770
ATEI1780
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o000

o000

580
600
620
630

660

4680

700

720

740

760
780

800

820
840

840

880
920
940

960

980
1000

1020
1040

CONTINUE

Q=P

@D TO &80

Pl=pP-1

a=P1

IF (P1-1) 680, 480, 650

DO 660 I=2,P1

IPI=IPI-IA-1
IF(ABS(A(IPI))-EPS) 680, 680, 660
=Q-1

GR DOUBLE ITERATION

I1I=(P-1)#IA+P

DO 1220 I=P,Ni
II1=11-IA
1IP=11+IA
IF(1-P)720. 700, 720
IPI=I1+1
IPIP=11P+1

INITIALIZATION OF THE TRANSFORMATION

C1=A(II)#(A(II)-S)+A(IIP)*A(IPI)+R
C2=A(IPI)*(A(IPIP)+A(I1I)-8)
C3=A(IPI)®»A(IPIP+1)
A(IPI+1)=0.0
€0 TO 780
G1=A(II1)
C2=A(I11+1)
IF(I-N2)740, 740, 760
Q3=A(I11+2)
@0 TO 780
€3=0. 0
CAP=SGRT (G121 +Q2#2+03#63)
IF (CAP) 800, 840, 800
IF(01)820. 840, 840
CAP=-CAP
T=G1+CAP
PSI1=Q2/T
PSIR=Q3/T
ALPHA=2. 0/(i. O+PSI1#PSI1+PSI2#PSI2)
€0 TO 880
ALPHA=2. 0
PSIi=0.0
PS12=0. 0
IF (1-Q)%00, 940, 900
IF(I-P)920, 940, 920
A(II1)=~CAP
€0 TO 960
AC(II1)=-A(II1)

ROW OPERATION

Iu=]1

DO 1040 J=I. N
T=PSIL1#A(IJ+1)

1F (1-N1)980, 1000, 1000
IP2U=1J+2
T=T+PSI2#A(IP2J)
ETA=ALPHA® (T+A(IJU))
A(IJ)=A(IJ)-ETA
A(TJ+1)=A(1J+1)~PSI12ETA
IF (1-N1)1020, 1040, 1040
ACIPRU)=A(IPRJ)~PSI2#ETA
Iy=lJ+1A

60
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ATEL1790
ATEI1800
ATEI1810
ATEI1820

ATE11850
ATEI1860
ATEI1870
ATEI1880
ATEI1890
ATEI1900
ATEI1910
ATEI1920

ATEI1930
ATEI1940
ATEI1950
ATEI1960
ATEI1970
ATEI1980
ATEI1990
ATE12000
ATEI2010
ATEI2020
ATEI2030
ATE12040
ATEI2050
ATEI2060
ATEI2070
ATEI2080
ATEI12090
ATEI2100
ATEI2110
ATEI2120
ATEI2130
ATEI2140
ATEI2150
ATEI2160
ATEI2170
ATEI2180
ATEI2190
ATEI2200
ATEI2210
ATEI2220
ATEI2230
ATEI2240
ATE12250
ATE12260
ATEI2270
ATE12280
ATEI2300
ATEI2310
ATEI2320
ATEI2230
ATE12340
ATEI2350
ATEI2360
ATE12370
ATE12380
ATE12390
ATE 12400
ATEI2410
ATE12420
ATEI2430
ATEI2440
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1060

1080
1100

1120

1140

1160
1180

1200

1220

1240

onn 0

1280

aoon

1300

1320

1400

"COLUMN OPERATION ~— — — 7 7

IF(I-N1)1080, 1060, 1060
K=N
60 TO 1100
K=1+2
IP=11IP-1
DO 1180 J=Q, K
JIP=IP+J
JI=JIP-1A
T=PSI1#*A(JIP)
IF(I-N1)1120, 1140, 1140
JIP2=JIP+IA
T=T+PSI2#A(JIP2)
ETA=ALPHAR(T+A(JI))
A(JI)=A(JI)-ETA
A(JIP)=A(JIP)-ETA*PSI1
IF(I-N1)1160,1180,1180
A(JIP2)=A(JIP2)-ETA#PSI2
CONTINUE
IF(I-N2) 1200, 1220, 1220
JI=11+3
JIP=JI+1A
JIP2=JIP+1A
ETA=ALPHA®PSI2*A(JIP2)
A(JI)=-ETA
A(JIP)=-ETA%PSI1
A(JIP2)=A(JIP2)-ETA*PSI2
I1I=11P+1
IT=IT+1
ead TO &0

END OF ITERATION

IF(ABS(A(NN1))~-ABS(A(N1IN2))) 1300, 1280, 1280

TWO EIGENVALUES HAVE BEEN FOUND

IANA(N) =0
IANA(N1)=2

N=Nz

IF(N2) 1400, 1400, 20

ONE EIGENVALUE HAS BEEN FOUND

RR(N)=A(NN)
RI(N)=0.0

IANA(N) =1
IF(N1)1400, 14.)0, 1320
N=N1

en 70 20

RETURN

END

AR 010 5 SO B D5 2 B0

61

~ ATEI2450

ATE12460
ATEI2470
ATE12480
ATEI24%90
ATEI2500
ATEI2510
ATEI2520
ATEI2530
ATEIZ2540
ATEI2550
ATEI2560
ATEI2570
ATEI2580
ATEIZ2590
ATEIR2600
ATEI2610
ATEI2620
ATEI2630
ATEI2640
ATEI2650
ATEIR2660
ATEI2470
ATEIR2680
ATEI26%90
ATEIR2700
ATEI2710
ATEI2720
ATEI2730
ATE12740
ATEIRZ750
ATEI2770
ATEI2790
ATE12800
ATEIZ2810
ATEI2820
ATEI2830
ATEI2840
ATEI2850
ATEI2860
ATEI2870
ATEI2880
ATEI2890
ATEI2900
ATEIR2910
ATEIZ2920
ATEI2930
ATEIR2940
ATEIZ950
ATEI29460
ATEI2970
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SUBROUTINE MATMUL ( IMOT, A, N, M, B, L)€, NA, WA, NB, M8, NC, MC) =
DIMENSION A(NA, MA), B(NB, MB), C{NC, MC)
A, B, C ARE GENERAL MATRIX
IF A X B =C, THEN IMOT IS 1
IF A X B'=C, THEN IMOT IS 2
DO 1 I=1,N
DO 1 J=1.L
C(1, N)=0.0
DO 1 K=1, M
G0 TO (2,3), IMOT
2 B1=B(K, J)
G0 TO 1
3 B1=B(J, K)
1 CCL, N=C(I, N+A(I, K)#B1
RETURN
END
SUBROUTINE MATAS(IAOS, A, N, M, B, C, NA, MA)
DIMENSION A(NA, MA), B(NA, MA), C(NA, MA)
c IF A+ B=C, THEN IAOS IS 1 '
c IF A-B = C, THEN 1AOS IS 2
IF(IADS. NE. 1) GO TD 10
DO 1 I=1,N
DO 1 J=1,M
1 C(I, DI=ACL, N+B(1, D)
RETURN
10 DO 2 I=1,N
DO 2 J=1, M
2 C(I.V)=A(L, J-B(I., V)
RETURN
END
SUBROUTINE MATVEC(A, N, M, B, C., NA, MA)
DIMENSION A(NA, MA), B(MA), C(NA)
DD 1 I=1.N
C(1)=0.0
DO 1 JU=1,M
1 C(I)=C(I)+A(I, JI*B(J)
RETURN
END
SUBROUTINE VECAS(IAOS, A, B: C, N)
DIMENSION A(N), B(N), C(N)
A, B . C ARE VECTORS
IF A+ B =C, THEN IAOS IS 1
IFA-B=C, THEN IAOS IS 2
IF(IADS. NE. 1)60 TO 10
DO 1 I=1,N
1 C(I)=ACI)+B(D)
RETURN
10 DO 2 I=1,N
2 C(I)=A(1)-B(I)
RETURN
END
SUBROUTINE MABCT(A,N. M, B, L, C, LL, D, NA, MA, NB, MB, NC, MC. ND, MD»
DIMENSION A(NA, MA), B(NB, MB), C(NC,MC), D{(ND, MD), AB(&, &)
DO 10 I=1,N
DO 10 J=i,L
| AB(I,U)=0.0 :
| DO 10 K=1.,M
AB(I, J)=AB(I, J)+A(1, K)#B(K, J)
10 CONTINUE
DO 20 I=1,N
DO 20 J=1,LL
D(I,U)=0.0
DO 20 K=1i,L
D(I, J)=D(I, J)+AB(I, KIBC(J, K)
20 CONTINUE
RETURN
END

00

anoon
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A0 A0 30 103 3 345 I 3636 I I A0 I I I I I W I W I A6 I AW I I I AW I 3B A A9
THIS PROGRAMMING IS CALLED PHASET. ITS MAIN PURPOSE IS TO
ESTIMATE THE UNKNOWN PHASE USING THE PHASE LOCKED LOOP HAVING
A VERY NARROW BANDWIDTH.
PROGRAMMER
CHANGUUNE YOON
TEXAS A & M UNIVERSITY
START JUNE, 1978
30U I8 3 2 I 3 U 2636 I I I W A Ib W I I WU W W I I I A I I W I WA W W I A 8 A6 A I W N
COMMON/SAMPLE /NSPB, TB
COMMON/PHASE /PHEES, PHEED
COMMON/QDB/ENODB, SURDB
DIMENSION HMO(2,2), HM1(2, 2), VESTO(4, 4), VEST1(4, 4), XESTO(4)
1, XEST1(4), VARINO(2, 2), VARIN1(2, 2), VO(2), V1(2)
DIMENSION GAINO(4,2),GAIN1(4, 2)
REAL MEAN
LOGICAL*1 STRNG(8)
INTEGER#4 JTIME
CALL ASSIGN(S, ‘SY: PHASET. DAT‘, 13, ‘RDO’, ‘NC*, 1)
CALL INPUT
READ(S, 1) NOCASE, NPRNT
1 FORMAT(2IS5)
DO 2000 NCASE=1, NOCASE
READ(S, 2) NOSYM, ENODB
2 FORMAT(IS,E15.6)
KSMAX=NOSYM#NSPB
CALL INIT(XJI. XJ@, XESTO, XEST1, VESTOQ, VEST1, XPI, XPQ, VCO
1, ERROR, ERRORS, MEAN, VARANS )
CALL QTIM(JUTIME)
CALL TIMASC(JTIME, STRNG)
WRITE (&, 7272) (STRNG(II), 1I1=1,8)
7272 FORMAT(1X, ‘START TIME IS ’, 8A1)
WRITE(6, 50)
SO FORMAT (&X, 2H1B, 95X, SHERROR. 14X, 6HERRATE., 11X, 6HERRORS, 12X
1, 6HERRATS, 12X, 16HPHEED IN DEOCREES, SX. 17HMEAN AND VARIANCE)
DO 1000 KS=1, KSMAX
CALL SIGNAL (KS, BB, SI, 8G)
CALL RFI(KS, XJI.XJQ, YI,YQ)
CALL DATA(SI, SQ. YI. YQ, ZI, Z@)
CALL VCOUT(KS, ZI,ZG, XPI, XPQ, VCO, MEAN, VARANS )
CALL REFGEN(KS, 0, FTRO. 6TRO, HMO)
CALL REFGEN(KS, 1, FTR1, 6TR1, HM1)
CALL KALMAN(KS, ZI, ZQ@, HMO, VESTO, XESTO, GAINO, VARINO, DETO, V0)
CALL KALMANCKS, ZI, 2@, HM1, VEST1, XEST1, GAIN1, VARIN1, DET1, V1)
CALL COST(KS. VO, VARINO, DETO, SUMO)
CALL COST(KS,V1,VARIN1, DET1, SUM1)
CALL STAND(KS, 21, ZG. SUMS, FTRO, 6TRO, FTR1, GTR1
1, AFSKO, AFSK1, BFSKO, BFSK1, SFSKO, SFSK1)
IB=1+IFIX((KS-. 5)/NSPB)
IF (MOD (KS, NSPB). NE. 0) 60 TO 1000
CALL DDCOM(KS, S8UMO, SUM1, XESTO, XEST1, BB, ERROR, ERRATE)
CALL STDCOM(KS. BUME, SFBKO, SFSK1, BB, ERRORS, ERRATS)
PHEEOD=340. #PHEED/ (2. #4. #ATAN(1. ))
IF (MOD(IB, NPRNT). EQ. 0) WRITE(&, 100) IB, ERROR, ERRATE, ERRORS, ERRATS
1, PHEEOD, MEAN, VARANS
100 FORMAT(2X, IS, SE18. &6, 2E13. 6)
1000 CONTINUE
CALL GTIM(JTIME)
CALL TIMASC (JTIME, STRNG)
WRITE(&, 7273) (STRNG(II), II=1,8)
7273 FORMAT(1X, ‘'TIME IS ’, BA1)
REWIND &
2000 CONTINUVE 64
sSTOP




END

BLOCK DATA
COMMON/SEED/ IXS, JXS, IXJ1, JXJ1, IXJ2: JXJ2, IXN1, JXN1, IXN2, JXN2
COMMON/SAMPLE/NSPB, TB
COMMON/OPTION/NOS
COMMON/DELAY/DELPHI. DELMEG
COMMON/SIGMA/SICMAJ, SIOMAN
COMMON/PHASE /PHEES, PHEED
COMMON/COLORD/PHIDJ, PHIOJ, GAMDJ, GAMOJ
COMMON/QDB/ENODB., SURDB
COMMON/PLLFLT/BNP, ESP, DELF
COMMON/FREGJ/FJ
COMMON/PHASIN/HO, P, Z, K1, K@, PHASP, PHASG
REAL KI. Ka
COMMON/TRACK/CAMMA (4, 4), PHEE (4, 4)
' INTECER#2 IX1(2),JX1(2), IXQ(R), IX2(2), IXI(R), JXI(2), IX&(Q), JXE(2)
1, IXS(2), JX5(2)
INTEGER#*4 IXS, JXS, IXJ1, UXJ1, IXJ2, JXJ2: IXNL, JXN1, IXN2, JXN2
EGQUIVALENCE (IXS, IX1), (JX8, JX1), (IXJ1, IX2), (UXJ1,JIX2), (IXJR, IX3I)
1, (JXJ2, JX3), (IXN1, IX4), (UXN1, JX&4), (IXN2: IX3), (JXN2, JXS5)
DATA IX1, JX1/"136303, "053354, "0412546, "141560/
DATA 1X2, JX2, IX3, JX3/" 1746303, “037702, “141236, "056407,
1 *123537, 103453, 0395032, "0324461/
DATA 1X4, JXA4, IX3, JX3/"034313. “103400, "021145, 104262,
1 072063, "122076, "016415, "041540/
END

-
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SUBROUTINE INPUT
COMMON/SAMPLE /NSPB, TB
COMMON/OPT10N/NOS
COMMON/DELAY /DELPHI, DELMEG
COMMON/PHASE /PHEES, PHEED
COMMON/FREGJ/FJ
COMMON/GDB/ENODB, SURDB
COMMON/PLLFLT/BNP, ESP. DELF |
COMMON/PHASIN/HO, P, Z, K1, KQ, PHASP, PHASG
READ(S, 1) NSPB. TB
READ(S, 1) NOS, DELPHI
READ(S, 2) ENODB., SURDB
PHEES=0.
c INITIALIZE PHEES AS PHEED

PHEEO=0.
READ(S, 2) Fu, HO
READ(5,3) BNP

1 FORMAT(IS, E15. &)

2 FORMAT(2E1S. &)

3 FORMAT(E15. &)
RETURN
END

SUBROUTINE INIT(XJI, XJ@, XESTO. XEST1, VESTO, VESTL, XP1, XPQ, VCO
1, ERROR., ERRORS, MEAN, VARANS)

COMMON/SAMPLE/NSPB, TB

COMMON/OPTION/NOS

COMMON/DELAY/DELPHI, DELMEGC

COMMON/SIGMA/SIGMAJ, SICMAN

COMMON/QDB/ENODB, SJRDB

COMMON/PLLFLT/BNP, EBP, DELF

COMMON/FREGJ/FJ

COMMON/COLORD/PHIDJ, PHIOJ, GAMDJ, CAMOV

COMMON/PHASE /PHEES, PHEED

COMMON/PHASIN/HO, P, Z, K1, KQ, PHASP, PHASC

REAL KI, KQ, MEAN

COMMON/TRACK/GAMMA(4, 4), PHEE(4, 4) 65
DIMENSION XESTO(4), XEST1(4), VESTO(4, 4), VEST1(4, 4)
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15

10
20

50

60

PI=4, #ATAN(1.)

DELMEG=DELPHI*2. #P1/TB

IF(NOS.EQ. 1) G0 TO 10

SUMF=0.

DO 1% K=1, NSPB

SUMF=SUMF + (SIN((K—. S5)#*TB#DELMEG/NSPB) ) ##2

SICMAN=SART (SUMF)#10. »#(~ENODB/20. )

G0 TO 20

CONSTP=SQRT (NSPB/2. ) #*ABS(SIN(DELPHI))

SICMAN=CONSTP#10. ##(—-ENODB/20. )

SIGMAJU=10. ##(~-SJURDB/20. )/SQRT(2. )

GENERATE THE COLOURED NOISE PARAMETERS AND ITS BANDWIDTH
" THE RHO-FILTER AND ITS BANDWIDTH

T=TB/NSPB

POLEJ=—2. #P I #FJ

PHIDJ=EXP (POLEJ*T)

CAM=(PHIDJ-1. ) /POLEV

GAINK=1. /SART(GCAM*%2/ (1. -PHIDJU#%2))

CAMDJU=GAINK*GAM

PHIOJU=0.

eAMOU=0.

BNJU=~POLEJ/4.

BNR=BNP

POLER=-4. #*BNR

PHIDR=EXP (POLER*T)

GAM=(PHIDR-1. ) /POLER

GAINK=1. /SGRT(CAM*#2/ (1. ~PHIDR#*%2))

CAMDR=GAINK*GAM

PHIOR=0.

GAMOR=0.

DO 50 I=1,4

DO S50 J=1,4

GAMMA (I, J)=0.

PHEE(1, J)=0.

GCAMMA (1, 1 )=CAMDR

CAMMA (2, 2)=CAMDR

GAMMA (3, 3)=CAMDJ

GAMMA (4, 4)=CAMDJ

PHEE(1, 1)=PHIDR

PHEE (2, 2)=PHIDR

PHEE (3, 3)=PHIDJ

PHEE(4, 4)=PHIDJ

GENERATE THE PHASE ESTIMATOR PARAMETERS
A=2. *PI#ESP/360.
TANHO=SIN(A) /COS(A)
HO= (2. #PI#DELF)/TANHO
KQ@=(8. /3. ) #BNP
Z=-(4. /3. )*BNP

P=KQ#*Z/HO

KI=P/2Z

PHASP=EXP(P&*T)

PHASG=(PHASP-1. ) /P

INITIALIZATION

XJI=0.

XJ@=0.

XP@=0.

XPI=1. /(KI#(P=2))

VCO=0.

DO 60 I=1,4

XESTO(1)=0.

XEST1(1)=0.

DO 65 I=1,4 66
DO 65 J=1,4




vESIO(L, VI=U.

IF(I. EQ. J) VESTO(I, J)=1.
65 CONTINUE

DO 70 I=1.,4

DO 70 J=1,4
70 VEST1(I,J)=VESTO(I, J)

ERROR=0.

ERRORS=0.

PHEED=0.

MEAN=0.

VARANS=0.

WRITE(&, 99) ENODB, SURDB

99 FORMAT (2X, 4HENODB=, E13. 6, 5X, 8HSURDB=, E13. 6, /)
WRITE(&, 100) NOS. NSPB. TB, DELPHI, PHEES

100 FORMAT (2X, 4HNOS=, I2, 5X, SHNSPB=, 15, 35X, 3HTB=, E13. 6, 3X
1, 7HDELPHI=, E13. &, 5X, 4HPHEES=, E13. 6, /)
WRITE(&, 101) GAMDJ, PHIDJ, BNJ

101 FORMAT (35X, 6HGAMDJ=, E13. &, 5X: 6HPHIDJ=, E13. &, 5X, 4HBNJU=, E1J. 6)
WRITE(6, 102) GAMDR, PHIDR, BNR

102 FORMAT(5X, 8HGAMDR=, E13. 6, 5X: 6HPHIDR=, E13. &, 5X. 4HBNR=, E13. )
WRITE(&, 103) PHASG, PHASP, BNP

103 FORMAT (5X, 6HPHASG=, E13. 6, 5X, 6HPHASP=, E13. &, 35X, 4HBNP=, E13. 4)
WRITE(&, 105) HO,P. Z, KI, KGQ

105 FORMAT (2X, 1BHPARAMETERS IN VCO=, /, X, S9HH(O)=, E13. 6, 5X, 2HP=, E13. 6
1, 5X, 2HZ=, E13. 6, 5X, 3HKI=, E13. 6, 5X, 3HKG=, E13. 4, ///)
REWIND 6
RETURN
END

SUBROUTINE SIGNAL (KS, BB, §I, SQ@)
COMMON/SEED/ IXS, JXS, IXJ1, JXJ1, IXJ2: JXJ2: IXNL, JXN1, IXN2, JXN2
INTEGER#*4 IXS, JXS, IXJ1, JXJ1, IXJ2, JXJ2, IXNL, JXN1, IXN2, JXN2
COMMON/SAMPLE/NSPB, TB
COMMON/OPTION/NGOS
COMMON/PHASE /PHEES, PHEED
COMMON/DELAY/DELPHI, DELMEG
IF(MOD(KS—1,NSPB). NE. 0) 60 TO 10
CALL RANC(IXS,JXS,QB)
BB=AINT(GB+. 5)

10 C=1. —2#BB
TK=(KS-. 5)/NSPB
TRMOD=(TR-IFIX(TK))*TB
A=1.
0 TD (1,2),N0S

1 PHEEM=DELPHI*C
€0 TO 20

2 PHEEM=DELMEG#*C*TKMOD

20 SI=A#C0OS(PHEEM+PHEES)
SG=A#*SIN(PHEEM+PHEES)
RETURN
END

SUBROUTINE RFI(KS, XJI,XJa: YI, YQ)

COMMON/SEED/ IX8, JXS, IXJ1, JXJ1, IXJR, JXJ2, IXN1, JXNI1, IXN2, JXN2
INTEQER#4 IXS, JXS, IXJ1, JXJ1, IXJ2, JXJ2, IXN1, JXNL, IXNR, JXN2
COMMON/COLORD/PHIDJ, PHIOJ, GAMDJ, CAMOJ
COMMON/SICGMA/SIGMAJ, SIGMAN

REAL NI, NG

CALL MARSAC(IXJ1,JXJ1, WI)

CALL MARSA(IXJ2, JXJ2, WQ)

CALL MARBA(IXNI1, JXN1,NI)

CALL MARSA(IXNZ, JXN2, N@)
XJ11=PHIDJ#XJI+PHIDJ#XJQ+0AMDJAWI +CAMDJ#WA

XJ@1=—PHIOJ#XJI+PHIDJ#XJQA~-CAMOJ#W I +0AMDJ#HE 67

YI=SI0MAJ#XJI+SIOMANSNI




YA=S ICMAUR XJA+S5 1 GMAN®NG
XJI=XJI1

XJa=XJa1

RETURN

END

SUBROUTINE DATA(SI. S84, YI,YQ, Z1,zQ)
COMMON/PHASE /PHEES, PREED

ZI=gI+YI

Za=5Qa+YQ

21=ZI#COS(PHEEQ) +ZQ#SIN(PHEED)
2@=~ZI+SIN(PHEEO) +ZQ#COS(PHEEQ)
RETURN

END

SUBROUTINE VCOUT(KS, Z1, 2Q, XPI, XPQ, VCO, MEAN, VARANS)
COMMON/SAMPLE/NSPB, TB
COMMON/PHASE /PHEES, PHEED
COMMON/PHASIN/HO, P, Z, KI, KQ, PHASP, PHASG
REAL KI,KQ, MEAN
XPQ1=PHASP*XPQ+PHASO#*ZQ
2Q1=KA* ( (P-7) #XPG+ZQ)
XPQ=XPG1
XPI1=PHASP#XP 1+PHASG#Z1
ZI1=KI#((P-Z)#XPI+ZI)
XPI=XP11
VCOP1=ZQ1/211
T=TB/NSPB
PHEEO=PHEED+ (VCOP 1+VCO) #T/2.
VCO=VCOP1
c ESTIMATE THE MEAN AND VARIANCE OF THE PHASE ERROR, RECURSIVELY

PHEEOD=360. #PHEED/ (2. #4. #*ATAN(1. ))
MEAN=( (KS—1. ) #MEAN+PHEEOD) /KS
EVAR= (PHEEOD-MEAN ) ##2
VARANS=( (KS-1. ) #*VARANS+EVAR ) /KS
RETURN
END .
SUBROUTINE REFQEN(KS, M, FTR, GTR, HM)
COMMON/SAMPLE/NSPB, TB
COMMON/DELAY/DELPHI, DELMEG
COMMON/OPT1ON/NOS
DIMENSION HM(2,2)
TK=(KS~-. 5) /NSPB
TKMOD=( TK-IFIX(TK) ) #TB
AR=1.
IF(NOS. NE. 1) GO TO 1
IF (M. EQ. 0) PHEEMR=DELPHI
IF (M. EG. 1) PHEEMR=-DELPHI
@0 TO 2

1 IF(M. EQ. 0) PHEEMR=DELMEG*TKMOD
IF(M. EQ. 1) PHEEMR=~DELMEG#TKMOD

2 FTR=AR*COS (PHEEMR)
OTR=AR*SIN(PHEEMR )
HM(1, 1)=COS(PHEEMR)
HM(1, 2)=SIN(PHEEMR )
HM(2, 1) =SIN(PHEEMR)
HM(2, 2)=—-COS (PHEEMR)
RETURN
END

SUBROUTINE KALMAN(KS, Z1, 2Q, HM, VEST, XEST. GAIN: VARINV, DET, V)
COMMON/TRACK/GAMMA (4, 4), PHEE (4, 4)
COMMON/SIOMA/SIGMAJY, SIOMAN

DIMENSION VEST(4,4),PVP(4,4),0TQ(4,4), VPRED(4, 4), VHT (4, 2)
1, HVHT(2, 2), VAR(2, 2), VARINV(2, 2), GAIN(4, 2), GH(4, 4), HM(2, 2)
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DrredSION UNN(2, 2) T

REAL IMGH(4. 4)

DIMENSION XEST(4). XPRED(4)., HXPRED(2),V(2),QV(4), HX (2, &)
DO 1 I=i,2

DO 1 uU=1,2

HXCT, J)=HM(I, J)

HX(1, 3)=SICMAJ

HX(1, 4)=0.

HX (2, 3)=0.

HX (2, 4)=S1QMAJ

VNN(1, 1)=SIOMAN#*2

VUNN(1, 2)=0.

VNN(2, 1)=0.

UNN(2, 2)=STEMAN#*#2

CALCULATE THE STEADY-STATE KALMAN CGAIN

CALL MABCT(PHEE. 4, 4, VEST, 4, PHEE, 4, PVP. 4,4, 4.4, 4, 4,4, 4)
CALL MATMUL (2, GAMMA, 4, 4, GAMMA, 4, CTG, 4. 4,4, 4, 4, 4)
CALL MATAS(1.PVP, 4, 4, GTG, VPRED: 4, 4)

CALL MABCT(HX. 2,4, VPRED: 4, HX., 2, HVHT. 2, 4. 4, 4,2, 4, 2, 2)
CALL MATAS(1,HVHT, 2, 2, VNN, VAR, 2, 2)

DET=VAR(1, 1)#VAR(2, 2)-VAR(1, 2)#VAR(2, 1)

VARINV (1, 1)=VAR(2, 2)/DET

VARINV (1, 2)=-VAR(1, 2)/DET

VARINV(2, 1)=-VAR(2, 1) /DET

VARINV(2, 2)=VAR(1, 1)/DET

CALL MATMUL (2, VPRED. 4, 4, HX: 2: VHT, 4, 4, 2, 4, 4, 2)
CALL MATMUL (1, VHT, 4. 2, VARINV, 2, 6AIN, 4,2, 2, 2, 4, 2)
CALL MATMUL (1, CAIN, 4,2, HX, 4,0H, 4,2, 2,4, 4., 4)

DO 10 I=1.4

DO 10 J=1.4

IMGH(I, J)=-GH(I. J)

IF(I. EQ. J) IMGH(I,J)=1. ~GH(I.,J)

CONTINUE

CALL MATMUL (1, IMGH, 4, 4, VPRED, 4, VEST, 4. 4,4, 4,4, 4)

CALL MATVEC(PHEE. 4, 4, XEST, XPRED, 4, 4)
CALL MATVEC(HX, 2, 4, XPRED, HXPRED: 2, 4)
V(1)=ZI-HXPRED(1)

V(2)=Z@-HXPRED(2)

CALL MATVEC(GAIN, 4,2,V, 0V, 4, 2)

CALL VECAS(1, XPRED, @V, XEST. 4)

RETURN

END

SUBROUTINE COST(KS, V, VARINV, DET, SUM)
COMMON/SAMPLE/NSPB, TB

DIMENSION V(2), VARINV(Z, 2)

IF(MOD(KS—1, NSPB). EQ. O) SUM=0.
ARC=-ALOG(DET)—(V(1)#22#VARINV (1, 1) +V(2) ##2#VARINV(2, 2)
1+V(1)#V(2)#(VARINV (1, 2)+VARINV(2, 1)))

SUM=SUM+ARG

RETURN

END

SUBROUTINE STAND(KS, ZI,2Q., S8UM, FTRO, GTRO, FTR1, ¢TR1
1, AFSKO, AFSK1. BFSKO, BFSK1, SFSKO, SFSK1)
COMMON/SAMPLE/NSPB, TB
COMMON/OPTION/NOS

0 TO (1,2),NOS
IF(MOD(KS~1, NSPB). EQ. O) SUM=O0.
SUM=SUM+ZQ

RETURN

IF(MOD(KS~1, NSPB). NE. 0) GO TO 20
AFSKO0=0.

AFSK1=0,

BFSKO=0,

AR e
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BrSn =0,
AFSKO=AFSKO+Z I #FTRO+ZG#GTRO
AFSK1=AFSK1+ZI*FTR1+ZG#CTR1
BFSKO=BFSKO+Z I #QTRO-ZA#FTRO
BFSK1=BFSK1+II#CTR1-ZG#FTR1
IF(MOD(KS, NSPB). NE. 0) RETURN
SFSKO=AFSKO#42+BFSKO##2
SFSK1=AFEK1##2+BFSK1%#%2
RETURN

END

SUBROUTINE DDCOM(KS, SUMO, SUM1., XESTO, XEST1, BB, ERROR, ERRATE)
COMMON/SAMPLE/NSPB, TB
DIMENSION XESTO(4), XEST1(4)
IF(SUMO. 6T. SUM1) GO TO 10
BBHAT=1.

DO 1 1=1.4
XESTO(I)=XEST1(1)

0 TO 20

BBHAT=Q.

DO 2 I=1,4
XEST1(1)=XESTO(I)
IF(BB. EQ. BBHAT) ERR=0O.
IF(BB. NE. BBHAT) ERR=1.
ERROR=ERROR+ERR
IB=1+IFIX((KS-. 5)/NSPB)
ERRATE=ERROR/IB

RETURN

END

SUBROUTINE STDCOM(KS. SUM, SFSKO, 8FSK1. BB, ERROR, ERRATE)
COMMON/SAMPLE/NSPB, TB
COMMON/DOPTION/NOS

0 TO (1,2),NOS
IF(S8UM. GE. 0. ) BBHAT=0.
IF(SUM.LT. 0. ) BBHAT=1.

60 70 10
IF(SFSKO. CT. SFSK1) BBHAT=O0.
IF (SFSK1. @T. SFSKO) BBHAT=1.
IF(BB. EQ. BBHAT) ERR=0.
IF(BB. NE. BBHAT) ERR=1.
IB=1+IFIX((KS-. 5)/NSPB)
ERROR=ERROR+ERR
ERRATE=ERROR/IB

RETURN

END

SUBROUTINE MARSA(IXA. JXA, V)
INTEGER®4 IXA, JXA

CALL RANC(IXA, JXA, X1)
CALL RANC(IXA, JXA, X2)
X1=(X1~. 9)»2,
X2m(X2~-. D) #2.
WeX19824+X2082

IF(W.LE. 1.) 00 TO 10
CALL RANC(IXA, JXA, X1)
CALL RANC (IXA, JXA, X2)
Al=(X1~-. 3)02,
X2=(X2-. 5) 22,

¢0 7O 9

AX=X1#8ART(-2. #*ALOQ(W) /W)
VsX28XX/X1

RETURN

END

70
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